0

Full Content is available to subscribers

Subscribe/Learn More  >

Development of Hydrogen Loading System and Characterization of Tritiated Metallic Films for Betavoltaic Batteries

[+] Author Affiliations
Thomas E. Adams, Shripad T. Revankar

Purdue University, West Lafayette, IN

Paper No. ICONE22-30174, pp. V005T17A024; 8 pages
doi:10.1115/ICONE22-30174
From:
  • 2014 22nd International Conference on Nuclear Engineering
  • Volume 5: Innovative Nuclear Power Plant Design and New Technology Application; Student Paper Competition
  • Prague, Czech Republic, July 7–11, 2014
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-4595-0
  • Copyright © 2014 by ASME

abstract

Betavoltaic cells can provide extended power up to 10 or more years in extreme temperature environments, −55°C to 150°C. However there is limited study on the loading of tritium which is beta source for these cells. The present study examines the loading of the tritium using surrogate hydrogen gas in various films through experiments and simulations. A detailed review of the betavoltaic cell characteristics is first discussed and key challenges in this technology are identified. For the experimental work, a testing facility is designed for loading hydrogen in metallic films such as titanium, palladium and scandium which are good for storage of hydrogen or tritium. The facility is unique as it enables precise measurement of hydrogen loading in the films using pressure difference. Preliminary tests of loading on scandium films were carried out and some results are presented. In order to optimize the film thickness simulations were carried out using MC-SET code for beta flux emission. The results of the simulations for titanium and palladium film are presented.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In