0

Full Content is available to subscribers

Subscribe/Learn More  >

Influence of Hydrodynamic Interaction on Jet Breakup and Fragmentation Behavior

[+] Author Affiliations
Shimpei Saito, Yutaka Abe, Akiko Kaneko, Yuzuru Iwasawa, Hideki Nariai

University of Tsukuba, Tsukuba, Ibaraki, Japan

Eiji Matsuo, Hiroshi Sakaba

Mitsubishi Heavy Industries, Ltd., Kobe, Hyogo, Japan

Ken-ichi Ebihara

Japan Atomic Energy Agency, Tokai, Ibaraki, Japan

Kazuya Koyama

Mitsubishi FBR Systems, Inc., Tokyo, Japan

Paper No. ICONE22-30028, pp. V005T17A005; 10 pages
doi:10.1115/ICONE22-30028
From:
  • 2014 22nd International Conference on Nuclear Engineering
  • Volume 5: Innovative Nuclear Power Plant Design and New Technology Application; Student Paper Competition
  • Prague, Czech Republic, July 7–11, 2014
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-4595-0
  • Copyright © 2014 by ASME

abstract

Mitigative measures against a Core Disruptive Accident (CDA) are important from the viewpoints of safety of a Fast Breeder Reactor (FBR). If a CDA occurs, Post Accident Heat Removal (PAHR) must be surely achieved. In the PAHR, molten materials are likely to be injected into the coolant like a jet and they must satisfy two requests simultaneously: fast ejection and stable cooling after quenched. In order to estimate the quench behavior of the molten jet, it is important to understand how the jet breaks up.

The objective of this study is to clarify that the influence of hydrodynamic interaction between a jet and the surrounding fluid on jet breakup. Previous works have clarified that one cause of the jet breakup is provoked by fragmentation at the side of a jet. However, there are few detailed results describing the correlation between jet breakup and hydrodynamic interaction at the leading-edge region of a jet. Additionally, air entrainment with a jet is always observed in our past experiments using simulants, but its influence has not been discussed yet.

In this study, jet injection experiments in liquid-liquid system were conducted for investigating the interaction a jet and an ambient fluid, and the effect of air entrainment on jet breakup behavior. Both simulant core materials and coolants were transparent liquids for visualization. The stored simulant core material was injected into a tank filled with the simulant coolant. In order to realize the condition without air entrainment, the air remaining within the nozzle was removed using a syringe. The jet breakup behavior was observed with a high speed video camera. A normal backlight system and a Laser Induced Fluorescence (LIF) system were employed for visualization. The inner velocity distribution of a jet was measured by Particle Image Velocimetry (PIV).

As a result, in the experiments without air entrainment the jet breakup lengths were described by Epstein’s equation. In addition, a pair of vortices was observed at the leading-edge region. The vortices were generated at the leading edge and the leading edge rolled up by the vortices returned toward a jet core. Thus, it was very likely that the vortices at the leading edge region promoted jet breakup.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In