Full Content is available to subscribers

Subscribe/Learn More  >

Validation of a 3D Hybrid CFD-DEM Method Based on a Self-Leveling Experiment

[+] Author Affiliations
Liancheng Guo

Kyushu University, Fukuoka, JapanKarlsruhe Institute of Technology (KIT), Karlsruhe, Germany

Koji Morita

Kyushu University, Fukuoka, Japan

Hirotaka Tagami, Yoshiharu Tobita

Japan Atomic Energy Agency, O-arai, Japan

Paper No. ICONE22-30618, pp. V004T10A024; 10 pages
  • 2014 22nd International Conference on Nuclear Engineering
  • Volume 4: Radiation Protection and Nuclear Technology Applications; Fuel Cycle, Radioactive Waste Management and Decommissioning; Computational Fluid Dynamics (CFD) and Coupled Codes; Reactor Physics and Transport Theory
  • Prague, Czech Republic, July 7–11, 2014
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-4594-3
  • Copyright © 2014 by ASME


The postulated core disruptive accidents (CDAs) are regarded as particular difficulties in the safety analysis of liquid-metal fast reactors (LMFRs). In the CDAs, core debris may settle on the core-support structure and form conic bed mounds. Heat convection and vaporization of coolant sodium will level the debris bed, which is named “self-leveling behavior” of debris bed. To reasonably simulate such transient behavior, as well as thermal-hydraulic phenomena occurring during a CDA, a comprehensive computational tool is needed. The SIMMER code is a successful computer code developed as an advanced tool for CDA analysis of LMFRs. It is a multi-velocity-field, multiphase, multicomponent, Eulerian, fluid dynamics code coupled with a fuel-pin model and a space- and energy-dependent neutron kinetics model. Until now, the code has been successfully applied to simulations of key thermal-hydraulic phenomena involved in CDAs as well as reactor safety assessment. However, strong interactions among rich solid particles as well as particle characteristics in multiphase flows were not taken into consideration for its fluid-dynamics models. Therefore, a hybrid computational method was developed by combining the discrete element method (DEM) with the multi-fluid models to reasonably simulate the particle behaviors, as well as the thermal-hydraulic phenomena of multiphase fluid flows. In this study, 3D numerical simulation of a simplified self-leveling experiment is performed using the hybrid method. Reasonable agreement between simulation results and corresponding experimental data demonstrated the validity of the present method in simulating the self-leveling behavior of debris bed.

Copyright © 2014 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In