0

Full Content is available to subscribers

Subscribe/Learn More  >

A Research Reactor Source Term and Dose Results in the Event of a LOCA

[+] Author Affiliations
Charalampos Pappas, Andreas Ikonomopoulos, Athanasios Sfetsos, Spyros Andronopoulos, Melpomeni Varvayanni, Nicolas Catsaros

National Center for Scientific Research “Demokritos”, Aghia Paraskevi, Attica, Greece

Paper No. ICONE22-31218, pp. V003T06A056; 10 pages
doi:10.1115/ICONE22-31218
From:
  • 2014 22nd International Conference on Nuclear Engineering
  • Volume 3: Next Generation Reactors and Advanced Reactors; Nuclear Safety and Security
  • Prague, Czech Republic, July 7–11, 2014
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-4593-6
  • Copyright © 2014 by ASME

abstract

The present study discusses the source term derivation and dose result calculation for a hypothetical accident sequence in the Greek Research Reactor – 1 (GRR-1). A loss-of-coolant accident (LOCA) has been selected as a credible accident sequence. The source term derivation has been based on the GRR-1 confinement performance where the inventory has been computed assuming continuous reactor operation. A core damage fraction of 30% has been considered for the calculations while conservative core release fractions have been employed. The radionuclides released from the reactor core to the confinement atmosphere have been subjected to natural decay, deposition on and resuspension from various internal surfaces before being led to the release pathway. It has been assumed that an emergency shutdown is initiated immediately after the beginning of the accident sequence and the emergency ventilation system is also activated. Subsequently, the source term has been derived comprising of noble gases, iodine and aerosol. The JRODOS computational software for off-site nuclear emergency management has been utilized to estimate the dose results from the LOCA-initiated source term that is released in its entirety from the reactor stack at ambient temperature. The Local Scale Model Chain in conjunction with the DIPCOT atmospheric dispersion model that is embedded in JRODOS have been used with proper parameterization of the calculation settings. Five weather scenarios have been selected as representative of typical meteorological conditions at the reactor site. The scenarios have been assessed with the use of the Weather Research and Forecast model. Total effective, skin, thyroid, lung and inhalation doses downwind of the reactor building and up to a distance of 10 km have been calculated for each weather scenario and are presented. The total effective gamma dose rate at a fixed distance from the reactor building has been assessed. The radiological consequences of the dose results are discussed.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In