0

Full Content is available to subscribers

Subscribe/Learn More  >

Development of Inherently Safe Technologies for Large Scale BWRs: (4) Hydrogen Explosion Prevention System Using SiC Fuel Claddings

[+] Author Affiliations
Ryo Ishibashi, Tomohiko Ikegawa, Kenji Noshita, Kazuaki Kitou, Mamoru Kamoshida

Hitachi Research Laboratory, Hitachi, Ltd., Hitachi, Ibaraki, Japan

Paper No. ICONE22-31139, pp. V003T06A052; 5 pages
doi:10.1115/ICONE22-31139
From:
  • 2014 22nd International Conference on Nuclear Engineering
  • Volume 3: Next Generation Reactors and Advanced Reactors; Nuclear Safety and Security
  • Prague, Czech Republic, July 7–11, 2014
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-4593-6
  • Copyright © 2014 by ASME

abstract

In the aftermath of the lessons learned from the Fukushima Daiichi nuclear accident, we have been developing the following various safe technologies for boiling water reactors (BWRs), including a passive water-cooling system, an infinite-time air-cooling system, a hydrogen explosion prevention system, and an operation support system for reactor accidents.

One of inherently safe technologies currently under development is a system to prevent hydrogen explosion during severe accidents (SAs). This hydrogen explosion prevention system consists of a high-temperature resistant fuel cladding of silicon carbide (SiC), and a passive autocatalytic recombiner (PAR). Replacing the zircaloy (Zry) claddings currently used in LWRs with the SiC claddings decreases the hydrogen generation and thus decreases the risk of hydrogen leakage from a primary containment vessel (PCV) to a reactor building (R/B) such as an operation floor. The PAR recombines the leaked hydrogen gas so as to maintain the hydrogen concentration at less than the explosion limit of 4 % in the R/B.

The advantages of using SiC claddings in the system were examined through experiments and SA analysis. Results of steam oxidation tests confirmed that SiC was estimated to show 2 to 3 orders of magnitude lower hydrogen generation rates during oxidation in a high temperature steam environment than Zry. Results of SA analysis showed that the total amount of hydrogen generation from fuels was reduced to one fifth or less. Calculation also showed that the lower heat of the oxidation reaction of SiC moderated the steep generation with the temperature increase. We expected this moderated steep generation to reduce the pressure increase in the PCV as well as prevent excess amounts of leaked hydrogen from hydrogen disposal rate capacity using PARs.

The SiC cladding under consideration consists of an inner metallic layer, a SiC/SiC composite substrate, and an outer environment barrier coating (EBC). A thin inner metallic layer in combination with a SiC/SiC composite substrate functions as a barrier for fission products. EBC is introduced to have both corrosion resistance in high temperature water environments during normal operation and oxidation resistance in high temperature steam environments during SA. Further reduction of the hydrogen generation rate in high temperature steam by improving the EBC is expected to decrease the total amount of hydrogen generation even more.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In