Full Content is available to subscribers

Subscribe/Learn More  >

Development of Inherently Safe Technologies for Large Scale BWRs: (3) Infinite-Time Air-Cooling System

[+] Author Affiliations
Akinori Tamura, Toshinori Kawamura, Naoyuki Ishida, Kazuaki Kitou

Hitachi, Ltd., Hitachi, Ibaraki, Japan

Paper No. ICONE22-30989, pp. V003T06A042; 7 pages
  • 2014 22nd International Conference on Nuclear Engineering
  • Volume 3: Next Generation Reactors and Advanced Reactors; Nuclear Safety and Security
  • Prague, Czech Republic, July 7–11, 2014
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-4593-6
  • Copyright © 2014 by ASME


To address long-term station black outs, which occurred at the Fukushima Nuclear Power Station, we have been developing the infinite-time air-cooling system which operates without electricity by a natural circulation loop. The air-cooling heat exchanger, which is located outside the primary containment vessel of a reactor, transfers the decay heat to the atmosphere by natural circulation resulting from the density difference of the air. Improvement in the heat-transfer performance of air-cooling is a key technology in the development of the infinite-time air-cooling system. In this paper, we developed the air-cooling enhancing technology for the infinite-time air-cooling system by using a micro-fabrication surface, turbulence-enhancing structures, and heat-transfer fins. To evaluate the performance of this air-cooling enhancing technology, we conducted a heat exchange test using an element test apparatus. A single tube of the air-cooling heat exchanger, which includes a sheath heater and thermo-couples, was used. The air flow outside the tube and the heat quantity were respectively controlled using an air-compressor and the sheath heater. The heat-transfer performance was calculated from the heat-quantity and temperature difference measured using thermo-couples. The developed air-cooling enhancing technology demonstrated superior heat-transfer performance in this test. The heat-transfer performance increased approximately 100 % with this technology compared with a bare pipe. From these experimental results, we confirmed good feasibility for implementing the infinite-time air-cooling system.

Copyright © 2014 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In