0

Full Content is available to subscribers

Subscribe/Learn More  >

Implementation of an Approach for Characterisation of Radiological Inventory for Decommissioning at Chinon A2 NPP

[+] Author Affiliations
A. Traichel, M. Mummert

NUKEM Technologies GmbH, Alzenau, Germany

F. Tardy

EDF-CIDEN, Lyon, France

Paper No. ICONE22-30977, pp. V003T06A041; 7 pages
doi:10.1115/ICONE22-30977
From:
  • 2014 22nd International Conference on Nuclear Engineering
  • Volume 3: Next Generation Reactors and Advanced Reactors; Nuclear Safety and Security
  • Prague, Czech Republic, July 7–11, 2014
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-4593-6
  • Copyright © 2014 by ASME

abstract

A general overview of the existing radioactive inventory in the plant is necessary for the decommissioning of nuclear power plants. Based on the knowledge about radiological inventory, appropriate decommissioning techniques and procedures can be specifically used. In order to derive the existing radiological activity in the facility a study was carried out to obtain a representative overview of the total radiological situation at the NPP. Within a study a generic methodology for the radiological characterization was developed. This methodology has been applied on the CO2-circuit of the gas-cooled, graphite-moderated reactor Chinon A2 (MAGNOX type). This paper covers the implementation of an approach for characterisation of radiological inventory for decommissioning.

The approach aims at the definition of the number and distribution of local sampling, required measurements as well as suitable measurement systems leading to a confident result with minimized effort in sampling. The paper covers two main objectives: 1. Methodology at and 2. Determination of radiological inventory based on measured data. The proposed methodology is a stepwise procedure which offers the possibility for minimizing the number of required measurements/sample analyses. At the first step the underlying system is an “as-simple-as-possible”-example with homogeneous contamination. In a second step the methodology is expanded to a more realistic and complex system, for which additional investigations have to be performed. The determination of the radiological inventory using the methodology has to consider a given confidence level and maximum allowed error. Therefore statistical assessment is widely used in estimations.

The result of this first part of study generates the basis for further investigation. This comprises application of methodology to the mentioned technical system. Therefore corresponding measurement and analysis data have to be delivered and proven regarding adequacy for the proposed methodology. From the dataset various measurement systematic and retained parameters could be derived. The accuracy of given measured data was checked by further examination. The result of the performed analysis leads to a statement about the activity in the primary circuit. The result of this study is an comprehensive estimation of the activity by defined statistical processing of analysed data. The result consists moreover of the analysis of the measurement plan and of distribution and deviation within the measured data. Suggestions for further measurement campaigns are provided based on the deviations and inconsistencies of the data. With the help of these suggestions it should be possible to decrease the number of samples and measuring data as well as improve the comparability of separate measurement processes. Particular potential for improvement of the result for inventory can be seen in a deeper analysis of uncertainties, this was realised and will be explained in the paper.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In