0

Full Content is available to subscribers

Subscribe/Learn More  >

Implications of Applying Semi-Scale Pump Test Data to Two-Phase RCP Performance Modeling for PWR LOCA Analyses

[+] Author Affiliations
Mathew C. Jacob, Michael T. Coon, John A. Blaisdell, Ruben J. Espinosa

Westinghouse Electric Company, Windsor, CT

Paper No. ICONE22-30847, pp. V003T06A038; 7 pages
doi:10.1115/ICONE22-30847
From:
  • 2014 22nd International Conference on Nuclear Engineering
  • Volume 3: Next Generation Reactors and Advanced Reactors; Nuclear Safety and Security
  • Prague, Czech Republic, July 7–11, 2014
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-4593-6
  • Copyright © 2014 by ASME

abstract

Emergency Core Cooling System (ECCS) analyses using Loss of Coolant Accident (LOCA) codes utilize two-phase Reactor Coolant Pump (RCP) performance models formulated on the basis of data from tests conducted on the Semi-scale pump (Reference 1) operating at 60 Hz frequency. In some PWRs, the RCPs operate at a frequency of 50 Hz. This paper presents the results of an evaluation performed to determine the applicability of RCP two-phase performance models developed on the basis of data from the Semi-scale tests for analyzing ECCS performance of new generation PWRs. The evaluation addressed two major issues: (1) the applicability of the two-phase RCP performance model developed using the data from the Semi-scale pump tests (Reference 1) for full scale Pressurized Water Reactor (PWR) LOCA simulations, and (2) the relevance of the two-phase RCP performance model developed on the basis of test data for the Semi-scale pumps running at 60 Hz frequency to PWR RCPs running at 50 Hz frequency with higher specific speeds.

Reviews of pump performance test data available in the open literature identified two-phase performance data appropriate for use in substantiating the validity of current PWR pump performance models. These data supported the conclusion that the two-phase head performance degradation for the Semi-scale Mod-1 pump is conservative compared to the two-phase pump performance data generated from testing of pumps representative of full scale PWR RCPs. A review of ECCS analyses results available in the literature determined that the use of the current RCP two-phase performance model (developed using the Semi-scale Mod-1 pump test data) for a typical PWR plant resulted in about a 100 °F increase in the Peak Clad Temperature (PCT) for a Large Break LOCA (LBLOCA) in comparison to the PCTs calculated using the two-phase pump performance model developed on the basis of test data for pumps representative of full scale PWR RCPs.

It was determined from the current study that the frequency (50 Hz vs. 60 Hz) of the electrical power that drives the pump motor is not of much consequence for two-phase RCP performance modeling, since (1) the RCP performance model is characterized via normalized pump performance parameters, and (2) for the LBLOCA analysis of interest, the RCPs are assumed to lose power at the start of the event.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In