Full Content is available to subscribers

Subscribe/Learn More  >

Spent Fuel Pool Under Severe Accident Conditions

[+] Author Affiliations
Bernd Jaeckel, Jonathan Birchley, Leticia Fernandez-Moguel

Paul-Scherrer-Institute, Villigen PSI, Switzerland

Paper No. ICONE22-30729, pp. V003T06A029; 7 pages
  • 2014 22nd International Conference on Nuclear Engineering
  • Volume 3: Next Generation Reactors and Advanced Reactors; Nuclear Safety and Security
  • Prague, Czech Republic, July 7–11, 2014
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-4593-6
  • Copyright © 2014 by ASME


The possibility of a spent fuel severe accident has received increasing attention in the last decade, and in particular following the Fukushima accident. Several large scale experiments and also separate effect tests have been conducted to obtain a data base for model development and code validation. The outcome of the Sandia BWR Fuel Project was used to define the flow parameters adjusted for the low pressure and the increased flow resistance due to the presence of the spent fuel racks which resulted in reduced buoyancy driven natural circulation flow compared with reactor geometry. The possibility of a zirconium fire, using the flow parameters obtained from the spent fuel experiments, is investigated in the present work. The important outcome of the study is that spent fuel will degrade if temperatures above 800 K are reached. In partial loss of coolant accidents the flow through the lower bottom nozzle is blocked and because there is no cross flow possible due to the spent fuel racks the coolant flow in the upper dry part of the spent fuel is limited by the steam production in the lower still wetted part of the fuel. This accident scenario leads to the fastest heat up in a postulated spent fuel accident. The influence of different kind of spent fuel storage (hot neighbour and cold neighbour) is investigated. An important factor in these calculations is the radial heat transfer to the neighbouring fuel assemblies. In the present work limits of the spent fuel storage under accident conditions (minimum allowed water levelin the pool) and total loss of coolant (maximum coolable decay heat per fuel assembly) are shown and explained.

Copyright © 2014 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In