Full Content is available to subscribers

Subscribe/Learn More  >

Study on a Small Power Reactor With Compact Pressure Vessel and Natural Circulation

[+] Author Affiliations
Kenya Takiwaki, Shungo Sakurai, Yutaka Takeuchi, Yasushi Yamamoto

Toshiba Corporation, Yokohama, Kanagawa, Japan

Paper No. ICONE22-30936, pp. V003T05A024; 8 pages
  • 2014 22nd International Conference on Nuclear Engineering
  • Volume 3: Next Generation Reactors and Advanced Reactors; Nuclear Safety and Security
  • Prague, Czech Republic, July 7–11, 2014
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-4593-6
  • Copyright © 2014 by ASME


There is movement which is developing the small reactor for the small electricity grid in place of a big power reactor which requires the high capital cost. This paper introduces a small power reactor whose purpose is to achieve high economic competitiveness and advanced safety. In order to attain high economic competitiveness, it is designed to be small and simple and uses natural circulation and high pressure. A steam generator is integrated into the reactor pressure vessel (RPV), thus dispensing with a primary system and preventing radiation leakage from the reactor core. The small core is designed to have a high power density (100 MW/m3, almost twice that of a conventional boiling water reactor). The concept of a 300 MWt (100 MWe) core design is established by introducing a boiling heat transfer system. By boiling cooling water, the cooling-water circulating flow quantity in a reactor core is enlarged.

By increasing a flow, the minimum critical power ratio is improved, which is an important core characteristic. Furthermore, using a burnable poison (Gd2O3), the excess reactivity of a reactor core is reduced and excess reactivity is controlled only by the control rod.

Moreover, the maximum linear power density is improved and the critical power ratio is minimized by optimizing the burnable poison arrangement and the control rod pattern.

In order to attain high safety, our small reactor has an advanced decay heat removal system that can cool the core without external support. This decay heat removal system is part of the secondary cooling system and combined with a cooling tower. As a result, the quantity of cooling water stored in the decay heat removal system is reduced, and longtime decay heat removal is possible by small equipment.

Copyright © 2014 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In