0

Full Content is available to subscribers

Subscribe/Learn More  >

A Simple One-Dimensional Model of a Passive Hydrogen Recombiner

[+] Author Affiliations
Antoni Rożeń

Warsaw University of Technology, Warszawa, Poland

Paper No. ICONE22-31124, pp. V02BT09A051; 8 pages
doi:10.1115/ICONE22-31124
From:
  • 2014 22nd International Conference on Nuclear Engineering
  • Volume 2B: Thermal Hydraulics
  • Prague, Czech Republic, July 7–11, 2014
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-4591-2
  • Copyright © 2014 by ASME

abstract

A simple one-dimensional model allowing fast predictions of: a gas composition and temperature profiles, a catalyst temperature profile and an overall hydrogen recombination degree has been developed for a passive catalytic recombiner. The model assumes that heat and mass transport processes, taking place in vertical channels between catalyst plates, occur in a highly non-isothermal, developing laminar gas flow and in conditions of mixed convection. A kinetic model of heterogeneous catalysis was implemented into the model and the heat radiation from the catalyst surface was accounted for. The model with no adjustable parameters was verified against experimental results available in literature and results of numerical simulations obtained by CFD methods.

Copyright © 2014 by ASME
Topics: Hydrogen

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In