Full Content is available to subscribers

Subscribe/Learn More  >

Advancement of Reactor Coolant Pump (RCP) Performance Verification Test in KAERI

[+] Author Affiliations
Yun-Je Cho, Yeon-Sik Kim, Seok Cho, Seok Kim, Byoung-Uhn Bae, Heung-June Chung, Young-Jung Youn, Jong-Kuk Park, Hae-Seob Choi, Woo-Jin Jeon, Bok-Deuk Kim, Tae-Soon Kwon, Chul-Hwa Song

KAERI, Daejeon, South Korea

Paper No. ICONE22-31075, pp. V02BT09A047; 6 pages
  • 2014 22nd International Conference on Nuclear Engineering
  • Volume 2B: Thermal Hydraulics
  • Prague, Czech Republic, July 7–11, 2014
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-4591-2
  • Copyright © 2014 by ASME


Korea Atomic Energy Research Institute (KAERI) has designed and constructed a test facility for reactor coolant pumps (RCPs). The RCP Test Facility (RCPTF) has the capability to test a RCP under the operation condition of an Advanced Power Reactor 1400 MW (APR1400). The design values of the facility are 17.2 MPa, 343 °C, 11.7 m3/s, and 13 MW in maximum pressure, temperature, flow rate, and electrical power, respectively. In the facility, it is possible to perform a type test for a newly-developed RCP as well as a production test for a RCP before its installation in a nuclear power plant. For the production test, H-Q curves under the cold and hot conditions are acquired. For the type test, various transient tests are additionally performed including four types of seal transient tests, a thrust bearing transient test, a cost down test, and so on.

To acquire H-Q curves of a RCP, the flow rate should be controlled by varying the flow resistance in the test loop. The RCPTF uses a Variable Restriction Orifice (VRO) whose flow area can be controlled by moving the two orifice plates installed in-parallel. The need for flow control valves and bypass lines was eliminated using the VRO such that the flow disturbance was minimized. The flow rate in the main loop of the RCPTF is measured by a standard venture flow meter. The flow rate in the RCPTF is very high and thus the venture flow meter could not be calibrated in the entire range of Reynolds number corresponding to the operating condition in the APR1400. The calibration was conducted at the Colorado Experiment Engineering Station Inc. (CEESI) in the USA where natural gas is used for a working fluid. If a discharge coefficient calibrated with the gas is applied in the test results performed using the water as a working fluid, a discrepancy can occur due to the static hole error. Therefore, the static hole error was compensated in the test results and the result shows the improvement.

The effect of the temperature on the pressure pulsation amplitude was also evaluated. During a cold performance test and heat-up phase to the condition of a hot performance test, an abnormal increase in the pressure pulsation amplitude was observed near the specific temperature range. This is acoustic resonance phenomena that occur when a blade passing frequency of the RCP is proportional to the harmonic resonance frequency of the RCPTF.

Copyright © 2014 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In