Full Content is available to subscribers

Subscribe/Learn More  >

Effect of Thermal Stratification on Full-Cone Spray Performance in Reactor Containment for a Scaled Scenario

[+] Author Affiliations
Sidharth Paranjape, Guillaume Mignot, Domenico Paladino

Paul Scherrer Institut, Villigen-PSI, Switzerland

Paper No. ICONE22-30755, pp. V02BT09A020; 14 pages
  • 2014 22nd International Conference on Nuclear Engineering
  • Volume 2B: Thermal Hydraulics
  • Prague, Czech Republic, July 7–11, 2014
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-4591-2
  • Copyright © 2014 by ASME


The results of an experimental study on the nuclear reactor containment spray system are presented. Depending on the initial conditions, the spray nozzle configuration and flow rates, the spray may cause higher hydrogen concentration during depressurization due to steam condensation, or it may erode the hydrogen stratification by enhanced mixing. To investigate these phenomena, the tests are performed using a full-cone spray nozzle in PANDA facility at Paul Scherrer Institut, Switzerland. Temporal evolution and spatial distribution of the fluid temperature and the fluid concentrations are measured using thermocouples and mass spectrometers. Two tests are performed with initial vessel wall temperatures of 105°C and 135°C, which create condensing and non-condensing environments respectively. The different initial conditions lead to different density stratifications. The effect of these different density stratification on the flow patterns and mixing of gases in the vessels due to the action of the spray is revealed by these tests.

Copyright © 2014 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In