Full Content is available to subscribers

Subscribe/Learn More  >

Fundamental Study on Application of Ultrasonic Velocimetry to Molten Glass

[+] Author Affiliations
Tomonori Ihara, Nobuyoshi Tsuzuki, Hiroshige Kikura

Tokyo Institute of Technology, Tokyo, Japan

Paper No. ICONE22-30695, pp. V02BT09A016; 8 pages
  • 2014 22nd International Conference on Nuclear Engineering
  • Volume 2B: Thermal Hydraulics
  • Prague, Czech Republic, July 7–11, 2014
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-4591-2
  • Copyright © 2014 by ASME


This paper describes fundamental study intended to apply ultrasonic velocimetry to molten glass. Buffer rod is employed to transmit ultrasound into molten glass. Several ceramics are tested for capability, which regards transmission characteristic and corrosion resistance. Among tested materials, mullite provides perfect wetting with a borosilicate glass and highest transmission ratio. Trailing echo level, which is the level of spurious signal arouse inside buffer rod, is evaluated both numerically and experimentally. Trailing echo level can be improved by using higher frequency of ultrasound. Acoustic field after buffer rod is investigated. Measurement near the buffer rod surface should be avoided due to ununiformed pressure distribution as a normal planner ultrasonic transducer has. Ultrasonic beam become sharp due to absorption on the side wall when buffer rod is equipped. Sound speed in the molten glass is obtained from 1000 °C to 1200 °C. Obtained values are almost constant within this temperature range although small negative slope is observed against temperature. Attenuation coefficient of ultrasound in the molten glass is also measured. The coefficient is well modelled to temperature dependent exponential function. Finally, application of velocimetry via buffer rod is demonstrated. From velocity profiles, maximum measurable range is investigated. Experimental results suggest that velocimetry measurement can be done unless ultrasound energy is attenuated to trailing echo level.

Copyright © 2014 by ASME
Topics: Glass



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In