Full Content is available to subscribers

Subscribe/Learn More  >

Integral Effect Test for Performance Evaluation of the PAFS (Passive Auxiliary Feedwater System) During a SBO (Station Blackout) Transient

[+] Author Affiliations
Byoung-Uhn Bae, Seok Kim, Yu-Sun Park, Yun-Je Cho, Kyoung-Ho Kang

Korea Atomic Energy Research Institute, Daejeon, Republic of Korea

Paper No. ICONE22-30563, pp. V02BT09A006; 7 pages
  • 2014 22nd International Conference on Nuclear Engineering
  • Volume 2B: Thermal Hydraulics
  • Prague, Czech Republic, July 7–11, 2014
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-4591-2
  • Copyright © 2014 by ASME


Station blackout (SBO) accident is considered as one of the most significant design extension conditions (DECs), which has been extensively focused after the Fukushima Dai-chi accident. When the SBO accident occurs in the APR+ (Advance Power Reactor Plus), the PAFS (Passive Auxiliary Feedwater System), which is an advanced safety feature adopted in the APR+, should play a significant role to cool down the core decay heat without any operation of active safety systems. This study focuses on validation of the cooling and operational performance for the PAFS during the SBO transient with utilizing an integral effect test facility, ATLAS-PAFS. In order to simulate the SBO transient of the APR+ as realistically as possible, a pertinent scaling approach was taken into account. The initial steady-state conditions and the sequence of event in the SBO scenario for the APR+ were successfully simulated with the ATLAS-PAFS facility. In the transient simulation, major thermal-hydraulic parameters such as the system pressures, the collapsed water levels, the break flow rate, and the condensate flow rate at the return-water line were measured and investigated. Following the reactor trip at the initiation of the transient, the coolant inventory of the secondary system of the steam generator was reduced by the repeated opening and closing of the MSSV. When the collapsed water level reached 25% of wide range, the PAFS was actuated to cool down the primary system by the condensation heat transfer at the PCHX (Passive Condensation Heat Exchanger). The pressure and the temperature of the reactor coolant system continuously decreased during the heat removal by the PAFS operation. It points out that the PAFS can supply auxiliary feedwater to the steam generator and remove the core decay heat without any active system. From the present experimental result, it could be concluded that the APR+ has the capability of coping with the hypothetical SBO scenario with adopting the PAFS and proper set-points of its operation. This integral effect test data will be used to evaluate the prediction capability of existing safety analysis codes of the MARS, RELAP5 as well as the SPACE code and to identify any code deficiency for a SBO simulation with an operation of the PAFS.

Copyright © 2014 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In