Full Content is available to subscribers

Subscribe/Learn More  >

Review on Water Radiolysis in the Fukushima Daiichi Accident: Potential Cause of Hydrogen Generation and Explosion

[+] Author Affiliations
Genn Saji

Independent Research and Consulting, Yokohama, Japan

Paper No. ICONE22-30991, pp. V001T02A026; 10 pages
  • 2014 22nd International Conference on Nuclear Engineering
  • Volume 1: Plant Operations, Maintenance, Engineering, Modifications, Life Cycle and Balance of Plant; Nuclear Fuel and Materials; Plant Systems, Structures and Components; Codes, Standards, Licensing and Regulatory Issues
  • Prague, Czech Republic, July 7–11, 2014
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-4589-9
  • Copyright © 2014 by ASME


Although the water radiolysis, decomposition of water by radiation, is a well-known phenomenon the exact mechanism is not well characterized especially for severe accidents. The author first reviewed the water radiolysis phenomena in LWRs during normal operation to severe accidents (e.g., TMI- and Chernobyl accidents) and performed a scoping estimation of the amount of radiological hydrogen generation, accumulation and release for the Fukushima Daiichi accident. The estimation incorporates the decay heat curve after a reactor trip combined with G-values. As much as 450 cubic meters-STP of accumulated hydrogen gas is estimated to be located inside the PCV just prior to the hydrogen explosion which occurred a day after the reactor trip in Unit 1.

When a set of radiological chain reactions are incorporated the resultant reverse reactions substantially reduce the hydrogen generation, even when removal of molecular products (i.e., oxygen and hydrogen) is assumed stripped rapidly from boiling water through bubbles. Even in the most favorable configuration a typical amount of hydrogen gas reduces to only several tens of cubic meters.

Finally, the author tested a new mechanism, “radiation-induced electrolysis,” which had been applied to his corrosion studies for last several years. His theory has been verified with the published in-pile test data, although he has never tried to apply this to his severe accident study. The predicted results indicated that the total inventory of hydrogen gas inside RPV may reach as much as 1000 cubic meters in just 3 hours during the SBO due to a high decay heat soon after the reactor trip through this process.

Copyright © 2014 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In