Full Content is available to subscribers

Subscribe/Learn More  >

Study of Different Configurations of ISCC Parabolic Trough

[+] Author Affiliations
Dolores Duran, Ivan Martínez

Universidad Autónoma del Estado de México, Toluca, México

Rafael Almanza

UNAM, México City, DF, México

Paper No. ES2014-6662, pp. V002T12A003; 11 pages
  • ASME 2014 8th International Conference on Energy Sustainability collocated with the ASME 2014 12th International Conference on Fuel Cell Science, Engineering and Technology
  • Volume 2: Economic, Environmental, and Policy Aspects of Alternate Energy; Fuels and Infrastructure, Biofuels and Energy Storage; High Performance Buildings; Solar Buildings, Including Solar Climate Control/Heating/Cooling; Sustainable Cities and Communities, Including Transportation; Thermofluid Analysis of Energy Systems, Including Exergy and Thermoeconomics
  • Boston, Massachusetts, USA, June 30–July 2, 2014
  • Conference Sponsors: Advanced Energy Systems Division
  • ISBN: 978-0-7918-4587-5
  • Copyright © 2014 by ASME


This work shows the study of different configurations of integrated solar combined cycle (ISCC) parabolic-trough power plant with Direct Steam Generation (DSG). This paper is a sequel of previous works (Duran), but in this case six different configurations are analyzed: two pressure level without reheater (2P), 2P considering the solar field the high pressure economizer of the heat recovery steam generator, 2P considering the solar field the low pressure superheater, two pressure level with reheater (2PR), 2PR considering the solar field the low pressure superheater, 2PR considering the solar field the high pressure economizer. The main objective is to achieve the thermoeconomic optimization (based on Thermodynamic 1st. Law) of the HRSG including the solar field, to determine the optimal design parameters of both systems.

It is applied a genetic algorithm (GA) methodology employed in previous works for the optimization of combined cycle power plants. Also, a sensitivity analysis with respect to the variation of solar radiation is done for the configurations that yield better results. As a result it would be obtained the optimal parameters of the HRSG and the optimal solar energy contribution for the configurations analyzed.

Copyright © 2014 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In