Full Content is available to subscribers

Subscribe/Learn More  >

Comparative Study of Solar Assisted Cooling Technologies for Two Different Climates

[+] Author Affiliations
Andrés Montero, Jesús López-Villada, Carlos Naranjo-Mendoza, Jerko Labus

National Institute for Energy Efficiency and Renewable Energy, Quito, Ecuador

Paper No. ES2014-6687, pp. V002T10A019; 6 pages
  • ASME 2014 8th International Conference on Energy Sustainability collocated with the ASME 2014 12th International Conference on Fuel Cell Science, Engineering and Technology
  • Volume 2: Economic, Environmental, and Policy Aspects of Alternate Energy; Fuels and Infrastructure, Biofuels and Energy Storage; High Performance Buildings; Solar Buildings, Including Solar Climate Control/Heating/Cooling; Sustainable Cities and Communities, Including Transportation; Thermofluid Analysis of Energy Systems, Including Exergy and Thermoeconomics
  • Boston, Massachusetts, USA, June 30–July 2, 2014
  • Conference Sponsors: Advanced Energy Systems Division
  • ISBN: 978-0-7918-4587-5
  • Copyright © 2014 by ASME


This study describes the influence of climate conditions and different solar assisted absorption technologies on the energy performance of air-conditioning systems. The correlation between dynamic cooling load profile and the performance of various solar assisted absorption system configurations was analyzed for two different climates: a hot-summer Mediterranean climate (Seville, Spain) and a tropical savannah climate (Guayaquil, Ecuador). A generic two-story office building was selected as a case study. The building fabrics are set to comply with the best practices of the two countries and the building counts with a useful area of 1152 m2 for the solar system installation. The hourly cooling demand for the building was calculated by using a simplified calculation method based on degree-days with variable base temperature. Three different solar assisted absorption configurations were simulated in TRNSYS software environment based on three types of solar collectors: evacuated tube collectors, parabolic trough collectors and linear Fresnel collectors (micro-concentrator type). The first configuration which involves evacuated tube collectors was coupled to a single-effect H2O-LiBr absorption chiller, while the other two configurations include double-effect H2O-LiBr absorption chiller. Models of two different absorption chillers were developed based on the characteristic equation method (ΔΔt). The comparison between the configurations was based on the primary energy analysis and CO2 emission.

Copyright © 2014 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In