Full Content is available to subscribers

Subscribe/Learn More  >

Performance Evaluation of an Air Source Heat Pump Coupled With a Building Integrated Photovoltaic/Thermal (BIPV/T) System

[+] Author Affiliations
Getu Hailu, Peter Dash, Alan S. Fung

Ryerson University, Toronto, ON, Canada

Paper No. ES2014-6455, pp. V002T10A009; 6 pages
  • ASME 2014 8th International Conference on Energy Sustainability collocated with the ASME 2014 12th International Conference on Fuel Cell Science, Engineering and Technology
  • Volume 2: Economic, Environmental, and Policy Aspects of Alternate Energy; Fuels and Infrastructure, Biofuels and Energy Storage; High Performance Buildings; Solar Buildings, Including Solar Climate Control/Heating/Cooling; Sustainable Cities and Communities, Including Transportation; Thermofluid Analysis of Energy Systems, Including Exergy and Thermoeconomics
  • Boston, Massachusetts, USA, June 30–July 2, 2014
  • Conference Sponsors: Advanced Energy Systems Division
  • ISBN: 978-0-7918-4587-5
  • Copyright © 2014 by ASME


A theoretical investigation of a variable capacity air-to-air air source heat pump (VC-ASHP) coupled with a building integrated photovoltaic/thermal (BIPV/T) system is presented in this paper. The BIPV/T system was integrated into the roof and the wall. Air was circulated behind the photovoltaic arrays to recover the thermal energy. The warm air recovered was supplied to the VC-ASHP. The thermal performance of the VC-ASHP was investigated for three scenarios when the heat pump is running in heating mode. The three scenarios are: (A) by feeding the ambient air to the ASHP; (B) by coupling the ASHP to the wall integrated BIPV/T only; and (C) by coupling the ASHP to the roof integrated BIPV/T only. The coefficient of performance (COP) of the VC-ASHP was evaluated for these three separate scenarios and compared. A typical winter day result suggests that the COP of the ASHP can be improved by coupling the VC-ASHP to either of the BIPV/T systems, i.e., either to the roof integrated BIPV/T system or to the wall integrated BIPV/T system.

Copyright © 2014 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In