Full Content is available to subscribers

Subscribe/Learn More  >

Effect of Thermal Storage on the Cooling Capacity of Ambient Sources

[+] Author Affiliations
Brian S. Robinson, M. Keith Sharp

University of Louisville, Louisville, KY

Paper No. ES2014-6350, pp. V002T10A004; 4 pages
  • ASME 2014 8th International Conference on Energy Sustainability collocated with the ASME 2014 12th International Conference on Fuel Cell Science, Engineering and Technology
  • Volume 2: Economic, Environmental, and Policy Aspects of Alternate Energy; Fuels and Infrastructure, Biofuels and Energy Storage; High Performance Buildings; Solar Buildings, Including Solar Climate Control/Heating/Cooling; Sustainable Cities and Communities, Including Transportation; Thermofluid Analysis of Energy Systems, Including Exergy and Thermoeconomics
  • Boston, Massachusetts, USA, June 30–July 2, 2014
  • Conference Sponsors: Advanced Energy Systems Division
  • ISBN: 978-0-7918-4587-5
  • Copyright © 2014 by ASME


Ambient sources, including ambient air at dry-bulb and wet-bulb temperature, ground temperature and night sky temperature, were evaluated for their potential to provide space cooling in locations across the U.S. While ground temperature is constant beyond a certain depth, the other sources have fluctuating temperatures, which present intermittent potentials for cooling. Simultaneously, cooling demands also fluctuate with outdoor temperature. Thermal storage can bridge intervals of time during which cooling is needed in the building, but ambient source temperature is too high to provide cooling. The duration of these intervals and the thermal storage capacity required to meet cooling needs based on ambient source potential prior to the interval were quantified for all eleven climate zones across the continental U.S using TMY3 weather data. The thermal storage capacity required to meet the entire annual cooling load is dictated by the span of time without ambient source cooling potential that has the greatest ratio of cooling load to ambient source cooling potential prior to the interval. This maximum thermal storage capacity, normalized by building overall loss coefficient, (this ratio has units of time) was one day or less for night sky temperature for all but the three warmest climates. This ratio was one day or less for wet-bulb temperature for four locations, and for dry-bulb temperature for only two locations. Ground temperature provided continuous cooling potential in all but the three warmest climates, where ground temperature was warmer than the indoor comfort temperature. Because the maximum thermal storage capacity was determined in most climates by uncommon and infrequent coincidence of high cooling demand and low ambient source cooling potential, smaller thermal storage provided substantial cooling capacity in most cases. For instance, ten percent of the maximum supplied 99% of the cooling load for the dry-bulb ambient air source in Albuquerque, and 0.1% of the maximum served over 90% of the cooling load with night sky radiation in New Orleans and Phoenix. While considerable development of hardware and control algorithms to utilize ambient sources for space cooling has occurred, this study shows the potential of these sources to further reduce demands for conventional energy for space cooling across a wide range of climates.

Copyright © 2014 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In