0

Full Content is available to subscribers

Subscribe/Learn More  >

Comparative Performance of Two Prototypes of a Passive Solar Heat Pipe System

[+] Author Affiliations
Brian S. Robinson, M. Keith Sharp

University of Louisville, Louisville, KY

Paper No. ES2014-6346, pp. V002T10A003; 4 pages
doi:10.1115/ES2014-6346
From:
  • ASME 2014 8th International Conference on Energy Sustainability collocated with the ASME 2014 12th International Conference on Fuel Cell Science, Engineering and Technology
  • Volume 2: Economic, Environmental, and Policy Aspects of Alternate Energy; Fuels and Infrastructure, Biofuels and Energy Storage; High Performance Buildings; Solar Buildings, Including Solar Climate Control/Heating/Cooling; Sustainable Cities and Communities, Including Transportation; Thermofluid Analysis of Energy Systems, Including Exergy and Thermoeconomics
  • Boston, Massachusetts, USA, June 30–July 2, 2014
  • Conference Sponsors: Advanced Energy Systems Division
  • ISBN: 978-0-7918-4587-5
  • Copyright © 2014 by ASME

abstract

Thermal performance of an improved passive solar heat pipe system was directly compared to that of a previous prototype. Simulated and experimental results for the first prototype established baseline performance. Subsequently, potential improvements were simulated, and a second prototype was built and tested along side the first. The system uses heat pipes for high rates of heat transfer into the building, and limited losses in the reverse direction. The evaporator section of each heat pipe is attached to a glass-covered absorber on the outside of a south wall, and the slightly elevated condenser section is either immersed in water in a thermal storage tank or exposed to air in the room. Two-phase flow occurs in the heat pipe only when the evaporator is warmer than the condenser, creating a thermal diode effect. Computer simulations showed that system performance could be improved by using thicker insulation between the absorber and the storage tanks, and by switching from a copper to a rubber adiabatic section, which both reduced heat losses to ambient from the storage tanks. Early morning heating was improved by exposing one of five condensers directly to room air, which also improved overall system efficiency. A copper solar absorber soldered to the copper evaporator section improved heat conduction compared to the previous aluminum absorber bonded to the copper evaporator. Together these modifications improved simulated annual solar fraction by 20.8%. The new prototype incorporating these changes was tested along side the previous prototype in a two-room passive solar test facility during January through February of 2013. Temperatures were monitored with thermocouples at multiple locations throughout the systems, in each room and outdoors. Insolation was measured by four pyranometers attached to the building. Results showed that the design modifications implemented for the new model increased thermal gains to storage and to the room, and decreased thermal losses to ambient. The load-to-collector ratio for the experiments was 2.7 times lower than for the simulations, which decreased the potential for experimental improvements compared to the simulated improvements. However, average daily peak efficiency for the new system was 85.0%, compared to 80.7% for the previous system. Furthermore, the average storage temperature over the entire testing period for the new model was 13.4% higher than that of the previous model, while the average room temperature over the same period was 24.6% greater for the new system.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In