Full Content is available to subscribers

Subscribe/Learn More  >

Frequency Analysis and Predictive Identification of Flame Stability by Image Processing

[+] Author Affiliations
Maria Grazia De Giorgi, Aldebara Sciolti, Elisa Pescini, Antonio Ficarella

University of Salento, Lecce, Italy

Paper No. ES2014-6599, pp. V002T04A014; 10 pages
  • ASME 2014 8th International Conference on Energy Sustainability collocated with the ASME 2014 12th International Conference on Fuel Cell Science, Engineering and Technology
  • Volume 2: Economic, Environmental, and Policy Aspects of Alternate Energy; Fuels and Infrastructure, Biofuels and Energy Storage; High Performance Buildings; Solar Buildings, Including Solar Climate Control/Heating/Cooling; Sustainable Cities and Communities, Including Transportation; Thermofluid Analysis of Energy Systems, Including Exergy and Thermoeconomics
  • Boston, Massachusetts, USA, June 30–July 2, 2014
  • Conference Sponsors: Advanced Energy Systems Division
  • ISBN: 978-0-7918-4587-5
  • Copyright © 2014 by ASME


Monitoring and characterization of combustion flames by digital image processing is an active research topic.

This study experimentally investigates the feasibility of high speed visualization techniques for combustion instability monitoring in a swirl liquid-fueled lean combustor for different air/fuel ratios. Instability, in fact, is an unpleasant aspect in the combustive system that negatively impacts on combustion efficiency.

This work investigates methods for extracting significant parameters using the geometrical and luminous data of the flame images; some flame features are related to the combustion regimes. The stability of the flame is identified using spectral and wavelet-based analysis of the pixel intensities of the flame images.

In particular the most flame unstable regions were identified by analyzing the two dimensional maps of different physical quantities.

The impact of the fuel/air ratio on the stability of the flame is investigated also by a Monochromator/Photomultiplier system (PMT).

The results support the potential of the methods described for flame monitoring.

Copyright © 2014 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In