Full Content is available to subscribers

Subscribe/Learn More  >

Multi-Regional Multi-Objective Optimization of an Algal Biofuel Polygeneration Supply Chain With Fuzzy Mathematical Programming

[+] Author Affiliations
Aristotle T. Ubando

De La Salle University, Manila, PhilippinesUniversity of Arizona, Tucson, AZTexas A&M University, College Station, TX

Joel L. Cuello

University of Arizona, Tucson, AZ

Mahmoud M. El-Halwagi

Texas A&M University, College Station, TX

Alvin B. Culaba, Raymond R. Tan

De La Salle University, Manila, Philippines

Paper No. ES2014-6461, pp. V002T03A004; 10 pages
  • ASME 2014 8th International Conference on Energy Sustainability collocated with the ASME 2014 12th International Conference on Fuel Cell Science, Engineering and Technology
  • Volume 2: Economic, Environmental, and Policy Aspects of Alternate Energy; Fuels and Infrastructure, Biofuels and Energy Storage; High Performance Buildings; Solar Buildings, Including Solar Climate Control/Heating/Cooling; Sustainable Cities and Communities, Including Transportation; Thermofluid Analysis of Energy Systems, Including Exergy and Thermoeconomics
  • Boston, Massachusetts, USA, June 30–July 2, 2014
  • Conference Sponsors: Advanced Energy Systems Division
  • ISBN: 978-0-7918-4587-5
  • Copyright © 2014 by ASME


A polygeneration approach is proposed to improve the economic viability of algal biofuel production through simultaneous production of co-products (i.e. electricity, heat, and other biochemicals). A multi-regional polygeneration supply chain consists of various array of processing plants in producing multiple bioenergy products given spatial constraints of each plant found in different regions. The inherent complexity of the polygeneration compounds the difficulty of designing the composite network of processing plants in multi-regions. Optimizing the design flow of the polygeneration supply chain considers multiple objectives, such as satisfying product demand, maximizing economic performance, and minimizing environmental footprint. In addition, the optimal strategic capacity design of the supply and distribution of biodiesel across multi-regions are considered. This study uses a fuzzy mathematical programming model to generate an optimized design of the polygeneration supply chain while satisfying all objectives. The developed model is demonstrated using a modified industrial case study comparing two cultivation alternatives. Results showed that all fuzzy multi-objective goals are satisfied and the flat-plate photobioreactor is the preferred cultivation system in terms of environmental footprints and economic performance.

Copyright © 2014 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In