0

Full Content is available to subscribers

Subscribe/Learn More  >

Hot Corrosion Studies Using Electrochemical Techniques of Alloys in a Chloride Molten Salt (NaCl-LiCl) at 650°C

[+] Author Affiliations
Judith C. Gomez, Robert Tirawat

National Renewable Energy Laboratory, Golden, CO

Edgar E. Vidal

Colorado School of Mines, Golden, CO

Paper No. ES2014-6739, pp. V001T02A057; 5 pages
doi:10.1115/ES2014-6739
From:
  • ASME 2014 8th International Conference on Energy Sustainability collocated with the ASME 2014 12th International Conference on Fuel Cell Science, Engineering and Technology
  • Volume 1: Combined Energy Cycles, CHP, CCHP, and Smart Grids; Concentrating Solar Power, Solar Thermochemistry and Thermal Energy Storage; Geothermal, Ocean, and Emerging Energy Technologies; Hydrogen Energy Technologies; Low/Zero Emission Power Plants and Carbon Sequestration; Photovoltaics; Wind Energy Systems and Technologies
  • Boston, Massachusetts, USA, June 30–July 2, 2014
  • Conference Sponsors: Advanced Energy Systems Division
  • ISBN: 978-0-7918-4586-8
  • Copyright © 2014 by ASME

abstract

Next-generation solar power conversion systems in concentrating solar power (CSP) applications require high-temperature advanced fluids in the range of 600° to 900°C. Molten salts are good candidates for CSP applications, but they are generally very corrosive to common alloys used in vessels, heat exchangers, and piping at these elevated temperatures. The majority of the molten-salt corrosion evaluations for sulfates with chlorides and some vanadium compounds have been performed for waste incinerators, gas turbine engines, and electric power generation (steam-generating equipment) applications for different materials and molten-salt systems. The majority of the molten-salt corrosion kinetic models under isothermal and thermal cyclic conditions have been established using the weight-loss method and metallographic cross-section analyses. Electrochemical techniques for molten salts have not been employed for CSP applications in the past. Recently, these techniques have been used for a better understanding of the fundamentals behind the hot corrosion mechanisms for thin-film molten salts in gas turbine engines and electric power generation. The chemical (or electrochemical) reactions and transport modes are complex for hot corrosion in systems involving multi-component alloys and salts; but some insight can be gained through thermochemical models to identify major reactions. Electrochemical evaluations were performed on 310SS and In800H in the molten eutectic NaCl-LiCl at 650°C using an open current potential followed by a potentiodynamic polarization sweep. Corrosion rates were determined using Tafel slopes and the Faraday law. The corrosion current density and the corrosion potentials using Pt wire as the reference electrode are reported.

Copyright © 2014 by ASME
Topics: Alloys , Corrosion

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In