Full Content is available to subscribers

Subscribe/Learn More  >

Optimization of Electrodynamic Screens for Efficient Removal of Dust Particles

[+] Author Affiliations
Arash Sayyah, Jeremy W. Stark, John N. Hudelson, Mark N. Horenstein, Malay K. Mazumder

Boston University, Boston, MA

Paper No. ES2014-6663, pp. V001T02A053; 8 pages
  • ASME 2014 8th International Conference on Energy Sustainability collocated with the ASME 2014 12th International Conference on Fuel Cell Science, Engineering and Technology
  • Volume 1: Combined Energy Cycles, CHP, CCHP, and Smart Grids; Concentrating Solar Power, Solar Thermochemistry and Thermal Energy Storage; Geothermal, Ocean, and Emerging Energy Technologies; Hydrogen Energy Technologies; Low/Zero Emission Power Plants and Carbon Sequestration; Photovoltaics; Wind Energy Systems and Technologies
  • Boston, Massachusetts, USA, June 30–July 2, 2014
  • Conference Sponsors: Advanced Energy Systems Division
  • ISBN: 978-0-7918-4586-8
  • Copyright © 2014 by ASME


Electrodynamic Screens (EDS) is a promising alternative for removing dust particles from solar collectors and advantageous compared to the current water-based cleaning methods used widely in solar industries. To operate the EDS for efficient removal of dust layer having different size distributions and compositions of particles, it is necessary to optimize the design of the EDS and the materials used for construction. Since the electric field is the main component in removal of the dust particles, this paper reports optimization of the electric field as the function of geometric parameters of the EDS. For the optimization of the EDS, two distinct objective functions have been defined and the optimal values for the electrode width and inter-electrode spacing have been provided. The EDS model has been implemented in the COMSOL Multiphysics finite element analysis (FEA) software and analytical results have been verified. Based on the optimized parameters, different designs have been gone under fabrication process and then testing. This is a work in progress paper and the experimental results will be provided later to corroborate the higher clearance rates for the optimal designs.

Copyright © 2014 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In