Full Content is available to subscribers

Subscribe/Learn More  >

Carbon Particle Generation and Lab-Scale Small Particle Heat Exchange Receiver Experimentation and Modeling

[+] Author Affiliations
Lee Frederickson, Fletcher Miller

San Diego State University, San Diego, CA

Mario Leoni

ETH Zürich, Zürich, Switzerland

Paper No. ES2014-6640, pp. V001T02A051; 7 pages
  • ASME 2014 8th International Conference on Energy Sustainability collocated with the ASME 2014 12th International Conference on Fuel Cell Science, Engineering and Technology
  • Volume 1: Combined Energy Cycles, CHP, CCHP, and Smart Grids; Concentrating Solar Power, Solar Thermochemistry and Thermal Energy Storage; Geothermal, Ocean, and Emerging Energy Technologies; Hydrogen Energy Technologies; Low/Zero Emission Power Plants and Carbon Sequestration; Photovoltaics; Wind Energy Systems and Technologies
  • Boston, Massachusetts, USA, June 30–July 2, 2014
  • Conference Sponsors: Advanced Energy Systems Division
  • ISBN: 978-0-7918-4586-8
  • Copyright © 2014 by ASME


Central receivers being installed in recent commercial CSP plants are liquid-cooled and power a steam turbine in a Rankine cycle. San Diego State University’s (SDSU) Combustion and Solar Energy Laboratory has built and is testing a lab-scale Small Particle Heat Exchange Receiver (SPHER). The SPHER is an air-cooled central receiver that is designed to power a gas turbine in a Brayton cycle. The SPHER uses carbon nanoparticles suspended in air as an absorption medium. The carbon nanoparticles should oxidize by the outlet of the SPHER, which is currently designed to operate at 5 bar absolute with an exit gas temperature above 1000°C.

Carbon particles are generated from hydrocarbon pyrolysis in the carbon particle generator (CPG). The particles are mixed at the outlet of the CPG with dilution air and the mixture is sent to the SPHER. As the gas-particle mixture flows through the SPHER, radiation entering the SPHER from the solar simulator is absorbed by the carbon particles, which transfer heat to the gas suspension and eventually oxidize, resulting in a clear gas stream at the outlet.

Particle mass loading is measured using a laser opacity measurement combined with a Mie calculation, while particle size distribution is determined by scanning electron microscopy and a diesel particulate scatterometer prior to entering the SPHER. In predicting the performance of the system, computer models have been set up in CHEMKIN-PRO for the CPG and in ANSYS Fluent for the SPHER, which is coupled with VeGaS ray trace code for the solar simulator.

Initial experimentation has resulted in temperatures above 850°C with around a 50K temperature difference when particles are present in the air flow. The CPG computer model has been used to estimate performance trends while the SPHER computer model has been run for conditions to match those expected from future experimentation.

Copyright © 2014 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In