Full Content is available to subscribers

Subscribe/Learn More  >

Development of High Temperature Liquid Metal Heat Transfer Fluids for CSP Applications

[+] Author Affiliations
Gopinath R. Warrier, Y. Sungtaek Ju

University of California, Los Angeles, Los Angeles, CA

Jan Schroers

Yale University, New Haven, CT

Mark Asta, Peter Hosemann

University of California, Berkeley, Berkeley, CA

Paper No. ES2014-6611, pp. V001T02A046; 15 pages
  • ASME 2014 8th International Conference on Energy Sustainability collocated with the ASME 2014 12th International Conference on Fuel Cell Science, Engineering and Technology
  • Volume 1: Combined Energy Cycles, CHP, CCHP, and Smart Grids; Concentrating Solar Power, Solar Thermochemistry and Thermal Energy Storage; Geothermal, Ocean, and Emerging Energy Technologies; Hydrogen Energy Technologies; Low/Zero Emission Power Plants and Carbon Sequestration; Photovoltaics; Wind Energy Systems and Technologies
  • Boston, Massachusetts, USA, June 30–July 2, 2014
  • Conference Sponsors: Advanced Energy Systems Division
  • ISBN: 978-0-7918-4586-8
  • Copyright © 2014 by ASME


In response to the DOE Sunshot Initiative to develop low-cost, high efficiency CSP systems, UCLA is leading a multi-university research effort to develop new high temperature heat transfer fluids capable of stable operation at 800°C and above. Due to their operating temperature range, desirable heat transfer properties and very low vapor pressure, liquid metals were chosen as the heat transfer fluid. An overview of the ongoing research effort is presented.

Development of new liquid metal coolants begins with identification of suitable candidate metals and their alloys. Initial selection of candidate metals was based on such parameters as melting temperature, cost, toxicity, stability/reactivity Combinatorial sputtering of the down selected candidate metals is used to fabricate large compositional spaces (∼ 800), which are then characterized using high-throughput techniques (e.g., X-ray diffraction). Massively parallel optical methods are used to determine melting temperatures. Thermochemical modeling is also performed concurrently to compliment the experimental efforts and identify candidate multicomponent alloy systems that best match the targeted properties. The modeling effort makes use of available thermodynamic databases, the computational thermodynamic CALPHAD framework and molecular-dynamics simulations of molten alloys. Refinement of available thermodynamics models are performed by comparison with available experimental data. Characterizing corrosion in structural materials such as steels, when using liquid metals, and strategies to mitigate them are an integral part of this study. The corrosion mitigation strategy we have adopted is based on the formation of stable oxide layers on the structural metal surface which prevents further corrosion. As such oxygen control is crucial in such liquid metal systems. Liquid metal enhanced creep and embrittlement in commonly used structural materials are also being investigated. Experiments with oxygen control are ongoing to evaluate what structural materials can be used with liquid metals. Characterization of the heat transfer during forced flow is another key component of the study. Both experiments and modeling efforts have been initiated. Key results from experiments and modeling performed over the last year are highlighted and discussed.

Copyright © 2014 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In