0

Full Content is available to subscribers

Subscribe/Learn More  >

Development of High Temperature, Corrosion Resistant Sensors for Concentrating Solar Power Systems

[+] Author Affiliations
Michael W. Usrey, Yiping Liu, Jon Lubbers, Brady Knowles, Kevin Harsh, Evan Pilant

Sporian Microsystems, Inc., Lafayette, CO

Mark Anderson

University of Wisconsin, Madison, WI

Paper No. ES2014-6569, pp. V001T02A038; 9 pages
doi:10.1115/ES2014-6569
From:
  • ASME 2014 8th International Conference on Energy Sustainability collocated with the ASME 2014 12th International Conference on Fuel Cell Science, Engineering and Technology
  • Volume 1: Combined Energy Cycles, CHP, CCHP, and Smart Grids; Concentrating Solar Power, Solar Thermochemistry and Thermal Energy Storage; Geothermal, Ocean, and Emerging Energy Technologies; Hydrogen Energy Technologies; Low/Zero Emission Power Plants and Carbon Sequestration; Photovoltaics; Wind Energy Systems and Technologies
  • Boston, Massachusetts, USA, June 30–July 2, 2014
  • Conference Sponsors: Advanced Energy Systems Division
  • ISBN: 978-0-7918-4586-8
  • Copyright © 2014 by ASME

abstract

Solar power is a sustainable resource which can reduce the power generated by fossil fuels, lowering greenhouse gas emissions and increasing energy independence. The U.S. Department of Energy’s SunShot Initiative has set goals to increase the efficiency of concentrating solar power (CSP) systems. One SunShot effort to help CSP systems exceed 50% efficiency is to make use of high-temperature heat transfer fluids (HTFs) and thermal energy storage (TES) fluids that can increase the temperature of the power cycle up to 1300°C.

Sporian has successfully developed high-temperature operable pressure, temperature, thermal flux, strain, and flow sensors for gas path measurements in high-temperature turbine engines. These sensors are based on a combination of polymer derived ceramic (PDC) sensors, advanced high-temperature packaging, and integrated electronics. The overall objective is the beneficial application of these sensors to CSP systems.

Through collaboration with CSP industry stakeholders, Sporian has established a full picture of operational, interface, and usage requirements for trough, tower, and dish CSP architectures. In general, sensors should have accurate measurement, good reliability, reasonable cost, and ease of replacement or repair. Sensors in contact with hot salt HTF and TES fluids will experience temperature cycling on a daily basis, and parts of the system may be drained routinely. Some of the major challenges to high-temperature CSP implementation include molten salt corrosion and flow erosion of the sensors. Potential high-temperature sensor types that have been identified as of interest for CSP HTF/TES applications include temperature, pressure, flow, and level sensors.

Candidate solar salts include nitrate, carbonate, and chloride, with different application temperatures ranging from 550°C-900°C. Functional ceramics were soaked for 500 hours in molten nitrate, carbonate, and chloride salts, showing excellent corrosion resistance in chloride salts and good resistance in nitrate salts. The demonstration of functional ceramics in relevant HTFs laid the foundation for full prototype sensor and packaging demonstration.

Sporian has developed a packaging approach for ceramic-based sensors in various harsh gaseous environments at temperatures up to 1400°C, but several aspects of that packaging are not compatible with corrosive and electrically conductive HTFs. In addition to consulting published literature, a 300 hour soak test in molten chloride salt allowed the authors to identify suitable structural metals and ceramics.

Based on discussions with stakeholders, molten salt corrosion testing and room-temperature water flow testing, suitable for CSP sensor/packaging concepts were identified for future development, and initial prototypes have been built and tested.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In