Full Content is available to subscribers

Subscribe/Learn More  >

Time Instant Optimization of a Heliostat Field Using a Heuristic Algorithm

[+] Author Affiliations
Maimoon Atif, Fahad A. Al-Sulaiman

KFUPM, Dhahran, Saudi Arabia

Paper No. ES2014-6566, pp. V001T02A036; 7 pages
  • ASME 2014 8th International Conference on Energy Sustainability collocated with the ASME 2014 12th International Conference on Fuel Cell Science, Engineering and Technology
  • Volume 1: Combined Energy Cycles, CHP, CCHP, and Smart Grids; Concentrating Solar Power, Solar Thermochemistry and Thermal Energy Storage; Geothermal, Ocean, and Emerging Energy Technologies; Hydrogen Energy Technologies; Low/Zero Emission Power Plants and Carbon Sequestration; Photovoltaics; Wind Energy Systems and Technologies
  • Boston, Massachusetts, USA, June 30–July 2, 2014
  • Conference Sponsors: Advanced Energy Systems Division
  • ISBN: 978-0-7918-4586-8
  • Copyright © 2014 by ASME


Solar central receiver systems are viewed as one of the most promising concentrated solar power (CSP) technologies for power production, in which solar radiation is concentrated through large mirrors (heliostats) onto a central receiver. This is due to the fact that very high temperatures can be reached at the receiver and thus higher thermal efficiency can be achieved compared with other CSP technologies. Heliostat field layout optimization is an essential task for any solar central receiver system.

In this paper, a heuristic algorithm, i.e. the differential evolution (DE), was employed to perform efficient optimization of the conventional radial staggered heliostat field layout using MATLAB. The model calculates all the required optical performance parameters at every step of the optimization process for each heliostat and consequently more reliable results are obtained as compared with many other optimization methods. Two cases were considered: one with single variable optimization and the other with multi-variable optimization. For the first case, the azimuthal spacing between the adjacent heliostats or the radial distance between the rows of heliostats were optimized independently and for the second case both of these variables were optimized simultaneously. Both cases were examined for high sun altitude angle and low altitude angle and a comparison study was performed between them to check their effect on the heliostat field efficiency. Finally, it was noted that varying the radial distance between the rows of the heliostats yields slightly better efficiency as compared with when optimizing the azimuthal spacing.

Copyright © 2014 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In