Full Content is available to subscribers

Subscribe/Learn More  >

Development of a Ceramic Pressurized Volumetric Solar Receiver for Supercritical CO2 Brayton Cycle

[+] Author Affiliations
S. D. Khivsara, V. Srinivasan, P. Dutta

IISc, Bangalore, India

Rathindra Nath Das, T. L. Thyagaraj, Shriya Dhar

BHEL, Bangalore, India

Paper No. ES2014-6482, pp. V001T02A024; 7 pages
  • ASME 2014 8th International Conference on Energy Sustainability collocated with the ASME 2014 12th International Conference on Fuel Cell Science, Engineering and Technology
  • Volume 1: Combined Energy Cycles, CHP, CCHP, and Smart Grids; Concentrating Solar Power, Solar Thermochemistry and Thermal Energy Storage; Geothermal, Ocean, and Emerging Energy Technologies; Hydrogen Energy Technologies; Low/Zero Emission Power Plants and Carbon Sequestration; Photovoltaics; Wind Energy Systems and Technologies
  • Boston, Massachusetts, USA, June 30–July 2, 2014
  • Conference Sponsors: Advanced Energy Systems Division
  • ISBN: 978-0-7918-4586-8
  • Copyright © 2014 by ASME


Recently, the supercritical CO2 (s-CO2) Brayton cycle has been identified as a promising candidate for solar-thermal energy conversion due to its potentially high thermal efficiency (50%, for turbine inlet temperatures of ∼ 1000K). Realization of such a system requires development of solar receivers which can raise the temperature of s-CO2 by over 200K, to a receiver outlet temperature of 1000K. Volumetric receivers are an attractive alternative to tubular receivers due to their geometry, functionality and reduced thermal losses. A concept of a ceramic pressurized volumetric receiver for s-CO2 has been developed in this work. Computational Fluid Dynamics (CFD) analysis along with a Discrete Ordinate Method (DOM) radiation heat transfer model has been carried out, and the results for temperature distribution in the receiver and the resulting thermal efficiency are presented. We address issues regarding material selection for the absorber structure, window, coating, receiver body and insulation. A modular small scale prototype with 0.5 kWth solar heat input has been designed. The design of a s-CO2 loop for testing this receiver module is also presented in this work.

Copyright © 2014 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In