Full Content is available to subscribers

Subscribe/Learn More  >

Low-Cost Lightweight Thin Film Solar Concentrators

[+] Author Affiliations
Gani B. Ganapathi, Bill Nesmith, Andrew Kindler

CalIfornia Institute of Technology, Pasadena, CA

Art Palisoc

L’Garde, Inc., Tustin, CA

Gyula Greschik

TentGuild Engineering, Boulder, CO

Koorosh Gidanian

KNF Corp, Laguna Beach, CA

Paper No. ES2014-6475, pp. V001T02A023; 12 pages
  • ASME 2014 8th International Conference on Energy Sustainability collocated with the ASME 2014 12th International Conference on Fuel Cell Science, Engineering and Technology
  • Volume 1: Combined Energy Cycles, CHP, CCHP, and Smart Grids; Concentrating Solar Power, Solar Thermochemistry and Thermal Energy Storage; Geothermal, Ocean, and Emerging Energy Technologies; Hydrogen Energy Technologies; Low/Zero Emission Power Plants and Carbon Sequestration; Photovoltaics; Wind Energy Systems and Technologies
  • Boston, Massachusetts, USA, June 30–July 2, 2014
  • Conference Sponsors: Advanced Energy Systems Division
  • ISBN: 978-0-7918-4586-8
  • Copyright © 2014 by ASME


A low-cost rigid foam-based concentrator technology development program was funded by the DOE SunShot Initiative to meet installed cost goals of $75/m2 vs. current costs of $200–250/m2. The cost reduction in this approach focuses primarily on designing a mirror module with a rigid foam center with stainless steel facesheets and reflective film. The low mechanical strength of the foam is compensated by optimizing the densities and dimensions to meet pointing accuracy requirements of 4 milliradians (mrad) in 27mph winds. Two alpha concentrators were built to validate the mirror module manufacturing process and one of them was accurate to 0.15 mrad RMS vs. the design requirement of 1 mrad RMS. To understand the lifetime reliability of the panels, fifteen 4-inch square samples were exposed to various environmental conditions including acid rain, bird droppings, thermal cycling, and the final results indicated no loss in reflectivity of 95%. UV testing will be performed in the next phase. Three mechanical structure options covering the range of large multi-faceted heliostats with diagonal load carrying elements, small single facet heliostats low to the ground and optimized truss-based deep structure designs were analyzed with FEA and analytically; results indicated a significant cost benefit (>2×) for the truss-based design over the other options. Other elements such as the controls, actuators were also considered in th analysis with vendor data. Cost trades were performed for heliostats ranging from 10m2 to 250m2. The results indicated a broad installed cost minimum around $113/m2 for heliostat sizes ranging from 80 m2 to 130 m2. Additional cost saving approaches will be considered in Phase 2 of the project.

Copyright © 2014 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In