Full Content is available to subscribers

Subscribe/Learn More  >

Solid Phase Heat Recovery and Multi Chamber Reduction for Redox Cycles

[+] Author Affiliations
Stefan Brendelberger, Jan Felinks, Martin Roeb, Christian Sattler

German Aerospace Center, Cologne, Germany

Paper No. ES2014-6421, pp. V001T02A016; 9 pages
  • ASME 2014 8th International Conference on Energy Sustainability collocated with the ASME 2014 12th International Conference on Fuel Cell Science, Engineering and Technology
  • Volume 1: Combined Energy Cycles, CHP, CCHP, and Smart Grids; Concentrating Solar Power, Solar Thermochemistry and Thermal Energy Storage; Geothermal, Ocean, and Emerging Energy Technologies; Hydrogen Energy Technologies; Low/Zero Emission Power Plants and Carbon Sequestration; Photovoltaics; Wind Energy Systems and Technologies
  • Boston, Massachusetts, USA, June 30–July 2, 2014
  • Conference Sponsors: Advanced Energy Systems Division
  • ISBN: 978-0-7918-4586-8
  • Copyright © 2014 by ASME


A system approach was used for the development of a new process concept for solar driven thermochemical redox cycles. Two aspects of this concept will be presented here. Since a high heat recovery rate for cycles using non-stoichiometric reduction has been identified as elementary in order to reach meaningful overall process efficiencies, a special focus was directed on this aspect. A quasi-countercurrent heat recovery system, which makes use of a particulate heat transfer medium, was outlined and numerically analyzed. The analysis shows that recovery rates of more than 70% seem realistic. Even though the heat recovery system is based on an arrangement of stages including relative complex flow pattern the basic principle seems promising and opens up new pathways for system design and optimization. The second aspect highlighted of the developed process concept is the use of a multi chamber system with optimized reaction conditions for the reduction of the redox material. By optimizing the pressure in a multi chamber system energy savings related to the pumping work of more than 20% are predicted. Also the execution of pre-reduction in the heat recovery system is discussed.

Copyright © 2014 by ASME
Topics: Heat recovery , Cycles



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In