0

Full Content is available to subscribers

Subscribe/Learn More  >

Optimization of a D-CHP System Based on Monthly Power-to-Heat Ratio

[+] Author Affiliations
Alta Knizley, Pedro J. Mago, James Tobermann

Mississippi State University, Mississippi State, MS

Paper No. ES2014-6487, pp. V001T01A004; 7 pages
doi:10.1115/ES2014-6487
From:
  • ASME 2014 8th International Conference on Energy Sustainability collocated with the ASME 2014 12th International Conference on Fuel Cell Science, Engineering and Technology
  • Volume 1: Combined Energy Cycles, CHP, CCHP, and Smart Grids; Concentrating Solar Power, Solar Thermochemistry and Thermal Energy Storage; Geothermal, Ocean, and Emerging Energy Technologies; Hydrogen Energy Technologies; Low/Zero Emission Power Plants and Carbon Sequestration; Photovoltaics; Wind Energy Systems and Technologies
  • Boston, Massachusetts, USA, June 30–July 2, 2014
  • Conference Sponsors: Advanced Energy Systems Division
  • ISBN: 978-0-7918-4586-8
  • Copyright © 2014 by ASME

abstract

In this paper, a combined heat and power (CHP) system utilizing two power generation units operating simultaneously with differing operational strategies (D-CHP) is analyzed on the basis of operational cost savings. An operating cost optimization metric, based on the facility monthly power-to-heat-ratio (PHR), is presented. The PHR is defined as the ratio between the electric load and the thermal load required by the facility. Previous work in this field has suggested that D-CHP system performance may be improved by limiting operation of the system to months in which the PHR is relatively low. The focus of this paper is to illustrate how the facility PHR can be used to determine the potential of a D-CHP system to reduce operational cost. This paper analyzed the relationship between the PHR and the operational cost savings of six different benchmark buildings, including buildings that are traditionally poor candidates for CHP or D-CHP systems, due to high cost of operation as compared with conventional systems with separate heating and power (SHP). Achieving operational costs savings through optimal operation based on monthly PHR for these building types can enhance the practical implementation potential of D-CHP and CHP systems.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In