Full Content is available to subscribers

Subscribe/Learn More  >

Integrated Methodology for Investigation of Wagon Bogie Concepts by Simulation

[+] Author Affiliations
S. S. N. Ahmad, C. Cole, M. Spiryagin, Y. Q. Sun

Central Queensland University, Rockhampton, QLD, AustraliaThe CRC for Rail Innovation, Brisbane, QLD, Australia

Paper No. ESDA2014-20634, pp. V002T07A032; 8 pages
  • ASME 2014 12th Biennial Conference on Engineering Systems Design and Analysis
  • Volume 2: Dynamics, Vibration and Control; Energy; Fluids Engineering; Micro and Nano Manufacturing
  • Copenhagen, Denmark, July 25–27, 2014
  • Conference Sponsors: International
  • ISBN: 978-0-7918-4584-4
  • Copyright © 2014 by ASME


Implementation of a new bogie concept is an integrated part of the vehicle design which must follow a rigorous testing and validation procedure. Use of multibody simulation helps to reduce the amount of time and effort required in selecting a new concept design by analysing results of simulated dynamic behaviour of the proposed design. However, the multibody simulation software mainly looks at the dynamics of a single vehicle; hence, forces from the train configuration operational dynamics are often absent in such simulations.

Effects of longitudinal-lateral and longitudinal-vertical interactions between rail vehicles have been found to affect the stability of long trains [1,2]. The effect of wedge design on the vertical dynamics of a bogie has also been discussed in [3,4]. It is important to apply the lateral and vertical forces from a train simulation into a single multibody model of a wagon to check its behaviour when operating in train configuration.

In this paper, a novel methodology for the investigation of new bogie designs has been proposed based on integrating dynamic train simulation and the multibody vehicle modelling concept that will help to efficiently achieve the most suitable design of the bogie. The proposed methodology suggests that simulation of any configuration of bogie needs to be carried out in three stages. As the first stage, the bogie designs along with the wagon configurations need to be presented as a multibody model in multibody simulation software to test the suitability of the concept. The model checking needs to be carried out in accordance with the wagon model acceptance procedure established in [5].

As the second stage, the wagon designs need to be tested in train configurations using a longitudinal train dynamics simulation software such as ‘CRE-LTS’ [2], where a train set consisting of the locomotives and wagons will be simulated to give operational wagon parameters such as lateral and vertical coupler force components.

As the third stage, the detailed dynamic analysis of bogies and wagons needs to be performed with a multibody software such as ‘Gensys’ where lateral and vertical coupler force components from the train simulation (second stage) will be applied on the multibody model to replicate the worst case scenario. The proposed methodology enhances the selection procedure of any alternate bogie concept by the application of simulated train and vehicle dynamics. The simulated case studies show that simulation of wagon dynamic behaviour in multibody software combined with data obtained from longitudinal train simulation is not only possible, but it can identify issues with a bogie design that can otherwise be overlooked.

Copyright © 2014 by ASME
Topics: Simulation



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In