0

Full Content is available to subscribers

Subscribe/Learn More  >

Research on Three-Variable Control Technology of Seismic Simulating Shaking Tables

[+] Author Affiliations
Qiangli Luan, Zhangwei Chen, He Mao

Zhejiang University, Hangzhou, China

Paper No. FPNI2014-7811, pp. V001T05A005; 5 pages
doi:10.1115/FPNI2014-7811
From:
  • 8th FPNI Ph.D Symposium on Fluid Power
  • 8th FPNI Ph.D Symposium on Fluid Power
  • Lappeenranta, Finland, June 11–13, 2014
  • Conference Sponsors: Fluid Power Net International (FPNI), Lappeenranta University of Technology, Finland
  • ISBN: 978-0-7918-4582-0
  • Copyright © 2014 by ASME

abstract

The seismic simulating shaking table is a typical electro-hydraulic servo test system and is controlled by a servo valve. The test system is widely used in the structural anti-seismic test. The seismic simulating shaking table usually has a low frequency response and a low damping which greatly limit its application for the wide bandwidth test. To further expand the bandwidth of the seismic simulating shaking table and increase its damping TVC (three-variable control) algorithm is proposed. In this paper, we research the TVC (three-variable control) algorithm for the seismic simulating shaking table, and also analyze its correction actions on the system characteristics of the shaking table achieved by both the TVC feedback and TVC feedforward loops. Then we further verify the improvement effects on the system’s frequency response characteristics of the shaking table taken by the TVC algorithm. The algorithm can expand the system bandwidth by introducing a velocity feedback and can increase the system damping by introducing an acceleration feedback. The TVC feedforward loop can eliminate the system poles near to the imaginary axis of system’s closed-loop transfer function and can also further expand the system bandwidth. Finally, we conduct two types of tests on a seismic simulating shaking table: sine sweep tests and seismic waveform replication tests. The results of the sine sweep tests show that the TVC algorithm can effectively improve the system’s frequency response characteristics of the shaking table and also improve its response speed. And the results of the seismic waveform replication tests show that the TVC algorithm can improve the replication accuracy of the seismic waveform.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In