Full Content is available to subscribers

Subscribe/Learn More  >

Quadratic Programming to Optimize Energy Efficiency of Speed- and Displacement-Variable Pumps

[+] Author Affiliations
Johannes Willkomm, Matthias Wahler

Bosch Rexroth AG, Lohr am Main, Germany

Jürgen Weber

TU Dresden, Dresden, Germany

Paper No. FPNI2014-7802, pp. V001T05A002; 10 pages
  • 8th FPNI Ph.D Symposium on Fluid Power
  • 8th FPNI Ph.D Symposium on Fluid Power
  • Lappeenranta, Finland, June 11–13, 2014
  • Conference Sponsors: Fluid Power Net International (FPNI), Lappeenranta University of Technology, Finland
  • ISBN: 978-0-7918-4582-0
  • Copyright © 2014 by ASME


Within the last years, speed-variable pump drives were investigated in numerous applications. In combination with a variable displacement pump, the volume flow and the drive speed can be decoupled. In this paper the resulting degree of freedom will be used to minimize the energy consumption of hydraulic processes by means of a novel model predictive control concept. A dynamic loss model of all drive components will be transformed to a mathematical quadratic optimization problem. The optimum use of the two control variables can achieve energy savings of up to 25% in comparison to known control strategies of speed-variable variable-displacement pumps. Especially in highly dynamic process cycles the proposed optimization guarantees optimum energy efficiency while known approaches become inefficient.

Copyright © 2014 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In