Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Investigation of Two-Dimensional Thermally Assisted Ductile Regime Milling of Brittle Materials

[+] Author Affiliations
Jianfeng Ma, Xianchen Ge

Saint Louis University, Saint Louis, MO

Shuting Lei

Kansas State University, Manhattan, KS

Paper No. MSEC2014-4191, pp. V002T02A101; 8 pages
  • ASME 2014 International Manufacturing Science and Engineering Conference collocated with the JSME 2014 International Conference on Materials and Processing and the 42nd North American Manufacturing Research Conference
  • Volume 2: Processing
  • Detroit, Michigan, USA, June 9–13, 2014
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-4581-3
  • Copyright © 2014 by ASME


This study investigates the effects of different variables (preheating temperature, edge radius, and rake angle) on ductile regime milling of a bioceramic material known as nanohydroxyapatite (nano-HAP) using numerical simulation. AdvantEdge FEM Version 6.1 is used to conduct the simulation of 2D milling mimicked by orthogonal machining with varying uncut chip thickness. Thermal boundary conditions are specified to approximate laser preheating of the work material. Based on the pressure-based criterion for ductile regime machining, the dependence of critical depth of cut on cutting conditions is investigated using Tecplot 360. It is found that as uncut chip thickness decreases, the critical depth of cut decreases. In addition, the critical depth of cut increases as the negativity of rake angle and/or preheating temperature increase.

Copyright © 2014 by ASME
Topics: Brittleness , Milling



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In