Full Content is available to subscribers

Subscribe/Learn More  >

Single Point Diamond Turning of Silicon by Using Micro-Laser Assisted Machining Technique

[+] Author Affiliations
Hossein Mohammadi, H. Bogac Poyraz, John A. Patten

Western Michigan University, Kalamazoo, MI

Deepak Ravindra

Micro-LAM Technologies LLC, Kalamazoo and Battle Creek, MI

Paper No. MSEC2014-4138, pp. V002T02A057; 8 pages
  • ASME 2014 International Manufacturing Science and Engineering Conference collocated with the JSME 2014 International Conference on Materials and Processing and the 42nd North American Manufacturing Research Conference
  • Volume 2: Processing
  • Detroit, Michigan, USA, June 9–13, 2014
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-4581-3
  • Copyright © 2014 by ASME


In this study, single point diamond turning (SPDT) is coupled with the micro-laser assisted machining (μ-LAM) technique. The μ-LAM system is used to preferentially heat and thermally soften the work piece material in contact with a diamond cutting tool. In μ-LAM the laser and cutting tool are integrated into a single package, i.e. the laser energy is delivered by a single mode fiber laser to and through a diamond cutting tool. This hybrid method can potentially increase the critical depth of cut (DoC), i.e., a larger ductile-to-brittle transition (DBT) depth, in ductile regime machining, resulting in a higher material removal rate (MRR). An IR continuous wave (CW) fiber laser, wavelength of 1064nm and max power of 100W with a beam diameter of 10μm, is used in this investigation. In the current study SPDT tests were employed on single crystal silicon (Si) wafer which is very brittle and hard to machine by conventional methods. Different outputs such as surface roughness and depth of cut for different set of experiments were analyzed. Results show that an unpolished surface of a Si wafer can be machined in one pass to get a very good surface finish. The Ra was brought down from 1.2μm to 275nm only in one pass which is a very promising result for machining the Si wafer.

Copyright © 2014 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In