0

Full Content is available to subscribers

Subscribe/Learn More  >

Finite Element Study on Chip Formation and Force Response in Two-Dimensional Orthogonal Cutting of Rock

[+] Author Affiliations
Demeng Che, Peidong Han, Bo Peng, Kornel F. Ehmann

Northwestern University, Evanston, IL

Paper No. MSEC2014-3952, pp. V002T02A038; 10 pages
doi:10.1115/MSEC2014-3952
From:
  • ASME 2014 International Manufacturing Science and Engineering Conference collocated with the JSME 2014 International Conference on Materials and Processing and the 42nd North American Manufacturing Research Conference
  • Volume 2: Processing
  • Detroit, Michigan, USA, June 9–13, 2014
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-4581-3
  • Copyright © 2014 by ASME

abstract

The understanding of the rock-cutter interaction is essential for efficient rock cutting/drilling performed with polycrystalline diamond compact (PDC) cutters in petroleum engineering and gas exploration. Finite element modeling of the rock cutting process still remains a challenge due to the complex material properties of rock, rock fracture and chip formation phenomena and large force oscillations during the dominant brittle cutting mode. A finite element study was conducted to investigate the chip formation and force responses in two-dimensional orthogonal cutting of rock. The Drucker-Prager model that incorporates a simple shear strain failure criterion was exploited to simulate the interactions between the rock and the cutter. A fully instrumented rock cutting testbed was developed to enable the measurements of the three orthogonal force components and of the uni-axial acceleration in the cutting direction along rectilinear tool-paths to evaluate the simulation results. The chip formation phenomena and force response predictions derived by the FEM simulations were in good agreement with the experimental tests.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In