Full Content is available to subscribers

Subscribe/Learn More  >

Geographic Differences of Greenhouse Gas Emission Reduction From Electric Vehicle Deployment in the United States

[+] Author Affiliations
Fan Yang, Chris Yuan

University of Wisconsin-Milwaukee, Milwaukee, WI

Xiang Zhao

General Motors Corporation, Warren, MI

Paper No. MSEC2014-4141, pp. V001T05A009; 6 pages
  • ASME 2014 International Manufacturing Science and Engineering Conference collocated with the JSME 2014 International Conference on Materials and Processing and the 42nd North American Manufacturing Research Conference
  • Volume 1: Materials; Micro and Nano Technologies; Properties, Applications and Systems; Sustainable Manufacturing
  • Detroit, Michigan, USA, June 9–13, 2014
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-4580-6
  • Copyright © 2014 by ASME


The use of electric vehicle (EV) has been widely recognized as an effective way to reduce greenhouse gas (GHG) emissions from transportation sector. However, the geographic difference of GHG emission reduction from EV deployment is seldom explored. This paper presents a study on the total GHG emissions generated from the life cycle of an EV (represented by Nissan Leaf) and an internal combustion vehicle (ICV) (represented by Toyota Corolla) for benchmarking on the potential emission reductions in the United States. The differences of electricity mix and driving style in each state are considered in the analysis. The results indicate a 43% GHG emissions reduction from ICV with the deployment of EV under the current average United States’ electricity generation scheme and transportation style. But the life cycle GHG emission reductions vary significantly from state to state in the U.S. Some states such as Indiana, Wyoming and West Virginia can only get 7237, 9501 and 9860 kg CO2 equivalent reduced, while some states such as Vermont, New Jersey and Idaho can get 57915, 57206 and 49039 kg CO2 equivalent GHG emissions reduced. This study can be useful in supporting future decision-making and strategy development for EV deployment in the U.S.

Copyright © 2014 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In