Full Content is available to subscribers

Subscribe/Learn More  >

Prediction of Tool Wear Based on Cutting Forces When End Milling Titanium Alloy Ti-6Al-4V

[+] Author Affiliations
Cynthia Stanley

University of Notre Dame, Notre Dame, IN

Durul Ulutan, Laine Mears

Clemson University, Greenville, SC

Paper No. MSEC2014-4140, pp. V001T04A040; 8 pages
  • ASME 2014 International Manufacturing Science and Engineering Conference collocated with the JSME 2014 International Conference on Materials and Processing and the 42nd North American Manufacturing Research Conference
  • Volume 1: Materials; Micro and Nano Technologies; Properties, Applications and Systems; Sustainable Manufacturing
  • Detroit, Michigan, USA, June 9–13, 2014
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-4580-6
  • Copyright © 2014 by ASME


Research regarding tool wear in the machining of difficult materials is important because it is a significant indicator of process failure in terms of degradation of part quality, and the resulting high cost and increased process time. Prior researchers have investigated the effects of cutting parameters on tool wear and as a result, tool life has seen significant improvement. However, these studies are not concerned with tool flank wear during machining; they instead focus on tool flank wear after a certain amount of cutting distance. This study proposes a new method of predicting tool flank wear during machining that has the capability of suggesting tool failure without directly measuring the tool. For this purpose, a detailed set of experiments on end milling of titanium alloy Ti-6Al-4V was conducted and analyzed. Then, the resultant force output, which can be monitored during machining, was used to establish a predictive algorithm for tool flank wear. Using the increase in the resultant force as well as the total energy spent on the workpiece, it was shown that tool flank wear can be effectively predicted during machining and this can decrease the time spent on tool failure inspection and early tool change, increasing the throughput of the process.

Copyright © 2014 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In