0

Full Content is available to subscribers

Subscribe/Learn More  >

The Investigation of Energy Loss in Conformal Contact Mechanics of Carpal-Radial Components in Wrist Arthroplasty

[+] Author Affiliations
Mohammad Hodaei, Kambiz Farhang

Southern Illinois University Carbondale, Carbondale, IL

Paper No. MSEC2014-4206, pp. V001T03A024; 9 pages
doi:10.1115/MSEC2014-4206
From:
  • ASME 2014 International Manufacturing Science and Engineering Conference collocated with the JSME 2014 International Conference on Materials and Processing and the 42nd North American Manufacturing Research Conference
  • Volume 1: Materials; Micro and Nano Technologies; Properties, Applications and Systems; Sustainable Manufacturing
  • Detroit, Michigan, USA, June 9–13, 2014
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-4580-6
  • Copyright © 2014 by ASME

abstract

The contact mechanics of Wrist prosthetic implant is considered in which the surface roughness of the implant is included. Total wrist replacements are developed to perform wrist function as near normal as possible. The main goal of wrist replacement surgery is to relieve patients from painful arthritis and to maintain function in the wrist and hand. The gradual wearing away of the cartilage covering on bones can lead to the most common form of arthritis, usually osteoarthritis. Wear is a very important issue in wrist implant. Metal debris caused by excessive wear in wrist implant can lead to toxicity and patient discomfort. Since implant wear can be the result of contact between surfaces of Carpal and Radial components, so the investigation of the effect of roughness between wrist components and establishing a model for interaction of surface roughness is very important. There are several different designs of wrist implant. Most of them have two components that are made of metal. A high quality plastic called polyethylene is used as a space between the two components. The purpose of this paper is to investigate the effect of roughness between interaction of these metal and polyethylene in wrist implants. This paper develops a contact model to treat the interaction of Carpal - Radial Components. The contact model describes the interaction of implant rough surfaces including both elastic and plastic deformations. In the model, surfaces are investigated as macroscopically conforming semi-Cylinder containing micron-scale roughness. The derived equations relate contact force on the implant and the minimum mean surface separation of the rough surfaces. Based on the distribution of asperity heights, the force is expressed using statistical integral function of asperity heights over the possible region of interaction of the roughness of the implant surfaces. Closed-form approximate equation relating contact force and minimum separation is used to obtain energy loss per cycle in a load-unload sequence applied to the implant.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In