0

Full Content is available to subscribers

Subscribe/Learn More  >

Multi-Material Capability of Laser Induced Plasma Micromachining

[+] Author Affiliations
Ishan Saxena, Kornel Ehmann

Northwestern University, Evanston, IL

Paper No. MSEC2014-4142, pp. V001T03A016; 8 pages
doi:10.1115/MSEC2014-4142
From:
  • ASME 2014 International Manufacturing Science and Engineering Conference collocated with the JSME 2014 International Conference on Materials and Processing and the 42nd North American Manufacturing Research Conference
  • Volume 1: Materials; Micro and Nano Technologies; Properties, Applications and Systems; Sustainable Manufacturing
  • Detroit, Michigan, USA, June 9–13, 2014
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-4580-6
  • Copyright © 2014 by ASME

abstract

Presently surface micro-texturing has found many promising applications in the fields of tribology, bio-medical engineering, metal cutting, and other functional or topographical surfaces. Most of these applications are material-specific, which necessitates the need for a texturing and machining process that surpasses the limitations posed by a certain class of materials that are difficult to process by laser ablation, owing to their optical or other surface or bulk characteristics. Laser Induced Plasma Micromachining (LIPMM) has emerged as a promising alternative to direct laser ablation for micro-machining and micro-texturing, which offers superior machining characteristics while preserving the resolution, accuracy and tool-less nature of laser ablation. This study is aimed at understanding the capability of LIPMM process to address some of the issues faced by pulsed laser ablation in material processing. This paper experimentally demonstrates machining of optically transmissive, reflective and rough surface materials using LIPMM. Apart from this, the study includes machining of conventional metals (Nickel and Titanium) and polymer (Polyimide), to demonstrate higher obtainable depth and reduced heat affected distortion around micro-features machined by LIPMM, as compared to laser ablation.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In