0

Full Content is available to subscribers

Subscribe/Learn More  >

Comparison of Microscale Rapid Prototyping Techniques for Microfluidic Applications

[+] Author Affiliations
Gordon D. Hoople, David A. Rolfe, Katherine C. McKinstry, Joanna R. Noble, David A. Dornfeld, Albert P. Pisano

University of California, Berkeley, Berkeley, CA

Paper No. MSEC2014-3932, pp. V001T03A001; 10 pages
doi:10.1115/MSEC2014-3932
From:
  • ASME 2014 International Manufacturing Science and Engineering Conference collocated with the JSME 2014 International Conference on Materials and Processing and the 42nd North American Manufacturing Research Conference
  • Volume 1: Materials; Micro and Nano Technologies; Properties, Applications and Systems; Sustainable Manufacturing
  • Detroit, Michigan, USA, June 9–13, 2014
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-4580-6
  • Copyright © 2014 by ASME

abstract

Recent developments in microfluidics have opened up new interest in rapid prototyping with features on the microscale. Microfluidic devices are traditionally fabricated using photolithography, however this process can be time consuming and challenging. Laser ablation has emerged as the preferred solution for rapid prototyping of these devices. This paper explores the state of rapid prototyping for microfluidic devices by comparing laser ablation to micromilling and 3D printing. A microfluidic sample part was fabricated using these three methods. Accuracy of the features and surface roughness were measured using a surface profilometer, scanning electron microscope, and optical microscope. Micromilling was found to produce the most accurate features and best surface finish down to ∼100 μm, however it did not achieve the small feature sizes produced by laser ablation. 3D printed parts, though easily manufactured, were inadequate for most microfluidics applications. While laser ablation created somewhat rough and erratic channels, the process was within typical dimensions for microfluidic channels and should remain the default for microfluidic rapid prototyping.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In