Full Content is available to subscribers

Subscribe/Learn More  >

Fabrication of Aluminum Nanocomposite by Ultrasonic Spray Deposited Sheet Bonding

[+] Author Affiliations
Mina Bastwros, Gap-Yong Kim, Jie Wang

Iowa State University, Ames, IA

Paper No. MSEC2014-3998, pp. V001T01A013; 8 pages
  • ASME 2014 International Manufacturing Science and Engineering Conference collocated with the JSME 2014 International Conference on Materials and Processing and the 42nd North American Manufacturing Research Conference
  • Volume 1: Materials; Micro and Nano Technologies; Properties, Applications and Systems; Sustainable Manufacturing
  • Detroit, Michigan, USA, June 9–13, 2014
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-4580-6
  • Copyright © 2014 by ASME


Reinforcement with nano-sized particles offers a promising potential to significantly enhance the mechanical, electrical, and thermal properties of a metal matrix composite (MMC). One of the challenges of synthesizing nanocomposites, however, has been the dispersion and control of the nano-reinforcement materials. In this study, a laminate nanocomposite has been synthesized by incorporating ultrasonic spray deposition technique. An ultrasonic spray deposition system was used to deposit nano-particles on substrate foils, which were consolidated to synthesize a laminate composite. Aluminum 6061 (Al6061) alloy foils were used as the matrix material. Nano-silicon carbide (SiC) particles were used as the reinforcement phase (deposited layer). The sprayed foils were stacked together to form the composite. The composite was then consolidated by hot compaction in the semi-solid regime of the Al6061. A three point bend test was carried out to evaluate the mechanical properties. In addition, the suspension and spraying parameters that control the deposited microstructure was studied to help control the final properties of the deposited structure. The yield and ultimate flexural strength of the SiC sprayed Al6061 laminate composite showed an increase (32% and 15%, respectively) compared with that of the unsprayed sample (reference sample) processed at the same condition.

Copyright © 2014 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In