0

Full Content is available to subscribers

Subscribe/Learn More  >

Experimental Characterization of Electroplated CBN Grinding Wheel Wear: Topology Evolution and Interfacial Toughness

[+] Author Affiliations
Tianyu Yu, Ashraf F. Bastawros, Abhijit Chandra

Iowa State University, Ames, IA

Paper No. MSEC2014-3961, pp. V001T01A005; 8 pages
doi:10.1115/MSEC2014-3961
From:
  • ASME 2014 International Manufacturing Science and Engineering Conference collocated with the JSME 2014 International Conference on Materials and Processing and the 42nd North American Manufacturing Research Conference
  • Volume 1: Materials; Micro and Nano Technologies; Properties, Applications and Systems; Sustainable Manufacturing
  • Detroit, Michigan, USA, June 9–13, 2014
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-4580-6
  • Copyright © 2014 by ASME

abstract

The wear rate of a grinding wheel directly affects the workpiece surface integrity and tolerances. This paper summarizes a combined experimental-modeling framework for life cycle prediction of an electroplated Cubic Boron Nitride (CBN) grinding wheel, typically utilized in nickel-based superalloy grinding. The paper presents an experimental framework to facilitate the formulation of a micro-mechanics based modeling framework. The presented work investigates the topological evolution of the grinding wheel surface and mechanisms of grit failure via depth profiling, digital microscopy and scanning electron microscopy. The results are used to elucidate the statistical evolution of the grinding wheel surface. Different modes of grit failure, including grit attritious wear, fracture and pull out haven been identified. The analysis of the surface topological features indicates a unique grit activation process, leading to a non-uniform spatial distribution of the grit wear. Additionally, single grit pull out experiment has been conducted to assess the residual strength of the grit-wheel interface and the associated state of damage percolation. The experimental results can be utilized in developing a life expectancy model for the CBN grinding wheel to assess the grit mean time to failure as well as grit surface topological evolution as a function of the process parameters.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In