0

Full Content is available to subscribers

Subscribe/Learn More  >

Effects of Ultrasonic Nano-Crystal Surface Modification on the Microstructure and Properties of 304 Austenitic Stainless Steel

[+] Author Affiliations
Chang Ye

University of Akron, Akron, OH

Abhishek Telang, Amrinder S. Gill, Seetha R. Mannava, Vijay K. Vasudevan

University of Cincinnati, Cincinnati, OH

Sergey Suslov

Purdue University, West Lafayette, IN

Zhong Zhou, Dong Qian

University of Texas at Dallas, Richardson, TX

Paper No. MSEC2014-3933, pp. V001T01A003; 8 pages
doi:10.1115/MSEC2014-3933
From:
  • ASME 2014 International Manufacturing Science and Engineering Conference collocated with the JSME 2014 International Conference on Materials and Processing and the 42nd North American Manufacturing Research Conference
  • Volume 1: Materials; Micro and Nano Technologies; Properties, Applications and Systems; Sustainable Manufacturing
  • Detroit, Michigan, USA, June 9–13, 2014
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-4580-6
  • Copyright © 2014 by ASME

abstract

In this study, the effects of Ultrasonic Nano-crystal Surface Modification (UNSM) on the microstructure changes and the mechanical properties of austenitic stainless steel 304 were studied. Due to the dynamic impacts induced by the multiple strikes during UNSM, surface nanocrystallization and transformation to martensite has been achieved. The work-hardened surface layers (3.5 times the original hardness) lead to significant improvement in the mechanical properties as measured by nano-indentation and tensile test. The results demonstrate that UNSM is a powerful surface processing technique that can improve component mechanical properties and performance.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In