0

Full Content is available to subscribers

Subscribe/Learn More  >

Warm Model Ice and Propeller Interaction, Capturing the Driving Mechanics?

[+] Author Affiliations
Gerco Hagesteijn, Joris Brouwer

MARIN, Wageningen, Netherlands

Paper No. OMAE2014-24036, pp. V010T07A040; 8 pages
doi:10.1115/OMAE2014-24036
From:
  • ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 10: Polar and Arctic Science and Technology
  • San Francisco, California, USA, June 8–13, 2014
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-4556-1
  • Copyright © 2014 by ASME

abstract

In the drive to design robust and more efficient propellers, the need to understand propeller-ice interaction is increasing. Traditionally MARIN has built up this kind of propeller design knowledge by developing and testing large systematic propeller series, such as the classic Wageningen B-series and the recent C and D-series. With systematic variations of blade number, area, pitch and profiles it can be investigated how these parameters influence the design and how the most efficient designs for operation in open water and in ice can be reached. This is becoming especially important for the lower ice class propellers, which are rarely sailing in ice covered areas. Apart from this, these designs should be optimized for low noise emission as well, to ensure application in the sensitive Arctic environment. When both milling and crushing loads can be captured using a warm model ice, the testing of such a large systematic propeller series becomes possible without the use of an ice basin.

In the present paper an evaluation is presented, showing the results of a first series of testing that was carried out with a warm model ice. The test set-up used is one that has also been used for the same kind of tests in a real ice basin. The warm model ice was designed to resemble the correct crushing strength at model scale. The warm ice samples are fed into the propeller, while at the same time the load on one of the propeller blades is recorded with a 6C-load transducer. At the same time the impact is recorded with a high speed video camera. To enable a detailed analysis, the force vector is plotted on the high speed recording. The force vector can be derived using a centre of pressure method. In this way an evaluation can be made if the captured phenomena are indeed similar to those that can be expected from real (model-)ice.

Copyright © 2014 by ASME
Topics: Ice , Propellers

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In