0

Full Content is available to subscribers

Subscribe/Learn More  >

On the Scalability of Model-Scale Ice Experiments

[+] Author Affiliations
Rudiger U. Franz von Bock Und Polach

Aalto University, Espoo, FinlandNorwegian University of Science and Technology, Trondheim, Norway

Sören Ehlers

Norwegian University of Science and Technology, Trondheim, Norway

Paper No. OMAE2014-23183, pp. V010T07A010; 9 pages
doi:10.1115/OMAE2014-23183
From:
  • ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 10: Polar and Arctic Science and Technology
  • San Francisco, California, USA, June 8–13, 2014
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-4556-1
  • Copyright © 2014 by ASME

abstract

Ice model-scale tests are a frequently used mean to assess and predict the performance of ships and structures in ice. However, ice model-scale tests may not be treated as a black-box where any full-scale scenario can be tested and a Froude-scalable result is obtained. Prior to scaling a thorough analysis of the physical processes is required and whether they can be transferred to full-scale. Model-scale ice is an empirically developed compound-material, consisting of frozen water, voids of air and other artificial dopants. The model ice manufacturing process and dopant amounts have been adjusted to achieve Froude-scalability for the ice thickness and certain force response levels, i.e. ice resistance tests of ships breaking ice in the bending mode.

However, not much is known about the internal mechanical processes of model-scale ice and how the scaled force levels are reached. This may add uncertainty to ice model tests and their application on new fields. Recent research indicated that the internal mechanics of model-scale ice and natural sea ice are different, which is also challenging some of the existing scaling approaches.

Mechanical specimen tests in full-scale and model-scale are usually compared by stresses, i.e. relating the failure load to the cross-sectional properties. However, depending on the tests different stress combinations might lead to failure, such as different geometries and dimensions may cause qualitatively different stress distribution, which ultimately limits the comparability of the tests.

Subsequently, this paper presents a qualitative assessment on selected topics to assess the differences of model-scale ice and natural ice and the influence of the specimen geometry. Furthermore, existing scaling approaches are discussed in context with recent research findings.

Copyright © 2014 by ASME
Topics: Ice

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In