Full Content is available to subscribers

Subscribe/Learn More  >

Wind Induced Nonlinear Response of Coupled Spar Platform

[+] Author Affiliations
Mohammed Jameel, A. B. M. Saiful Islam, Mohd Zamin Jumaat

University of Malaya, Kuala Lumpur, Malaysia

Suhail Ahmad

Indian Institute of Technology Delhi, Delhi, India

Paper No. OMAE2014-23779, pp. V08AT06A061; 10 pages
  • ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 8A: Ocean Engineering
  • San Francisco, California, USA, June 8–13, 2014
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-4550-9
  • Copyright © 2014 by ASME


The oil and gas exploration has moved from shallow water to much deeper water far off the continental shelf. Spar platforms under deep water conditions are found to be the most economical and efficient type of offshore platform. Several Spar platforms installed in the Gulf of Mexico and North Sea proves its suitability for deep water exploration. Accurate prediction of motions of a Spar hull is very important for the integrity and associated costs of the riser/mooring line. The most common approach for solving the dynamics of Spar platform is to employ a decoupled quasi-static method, which ignores all or part of the interaction effects between the platform, mooring lines and risers. Coupled analysis, which includes the mooring lines, risers and platform in a single model, is the only way to capture the damping from mooring lines and risers in a consistent manner. The present coupling is capable in matching the forces, displacement, velocities and acceleration for mooring line with Spar hull at the fairlead position and riser with Spar hull at the riser keel connection. It can handle possible significant nonlinearities. The output from such analyses will be platform motions as well as a detailed mooring line and riser responses. In actual field problems hydrodynamic and aerodynamic loads act simultaneously on Spar platform, mooring lines and risers. In finite element model, the entire structure acts as a continuum. This model can handle all nonlinearities, loading and boundary conditions. The selected configuration of Spar platform is analysed under wave force together with wind loading and its structural response behaviour in steady state is studied. An automatic Newmark-β time incremental approach in ABAQUS/AQUA environment has been implemented to conduct the analysis in time domain. The wind force acting on the exposed part of the platform encompasses mean and fluctuating wind components. The frontal region includes the topside assembly and the spar hull portion above the sea level. High degree of nonlinearities makes the solutions convergence sensitive and it requires large number of iterations, at each time station. Spar responses in surge, heave and pitch along with top tension in moorings are computed. The coupled Spar experiences significant lateral shift along wave direction due to wind loading. Increase in standard deviation shows the participation of wind loading giving higher fluctuations. The CML tension increases for wind loading but the extent of the tension fluctuations under wind loading is not much due to high pretension of mooring line.

Copyright © 2014 by ASME
Topics: Spar platforms , Wind



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In